Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 7166-7173, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506183

RESUMO

A key aspect of how the brain learns and enables decision-making processes is through synaptic interactions. Electrical transmission and communication in a network of synapses are modulated by extracellular fields generated by ionic chemical gradients. Emulating such spatial interactions in synthetic networks can be of potential use for neuromorphic learning and the hardware implementation of artificial intelligence. Here, we demonstrate that in a network of hydrogen-doped perovskite nickelate devices, electric bias across a single junction can tune the coupling strength between the neighboring cells. Electrical transport measurements and spatially resolved diffraction and nanoprobe X-ray and scanning microwave impedance spectroscopic studies suggest that graded proton distribution in the inhomogeneous medium of hydrogen-doped nickelate film enables this behavior. We further demonstrate signal integration through the coupling of various junctions.

2.
Langmuir ; 38(1): 203-210, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34962813

RESUMO

Rare-earth elements (REEs) are 17 elements of the periodic table primarily consisting of lanthanides. In modern society, the usage of REEs is ubiquitous in almost all modern gadgets and therefore efficient recovery and separation of REEs are of high importance. Selective adsorption and chelation of REEs in solid sorbents is a unique and sustainable process for their recovery. In this work, single-stranded oligos with 100 units of thymine were grafted onto carboxylated mesoporous carbon to synthesize a sorbent with phosphorus and oxygen functionalities. The sorbent was characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy-energy-dispersive X-ray spectroscopy. Three different REEs with varying atomic radii and densities, Lu, Dy, and La, were adsorbed onto the carbon from aqueous solutions. It was observed that the adsorbed amounts increased with the increase in the atomic radius or decrease in the atomic density. Calculation of the distribution coefficients for all the equilibrium adsorption amounts suggested that adsorption is more effective in the lower concentration region. The L3-edge X-ray absorption near-edge structure confirmed a 3+ oxidation state of REEs in the adsorbed phase. Extended X-ray absorption fine structure (EXAFS) confirmed the binding of REEs with oxygen functionalities in the adsorbed phase. The radial distribution functions calculated from the EXAFS data suggest a longer RE-O distance for La compared to those for Lu and Dy. The coordination numbers and Debye-Waller factors have typical values of about 8-9 atoms and 0.01-0.02 Å2, respectively.

3.
J Am Chem Soc ; 142(7): 3489-3498, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31977205

RESUMO

The use of helical hexapeptides to establish a surface dipole layer on a TiO2 substrate, with the goal of influencing the energy levels of a coadsorbed chromophore, is explored. Two helical hexapeptides, synthesized from 2-amino isobutyric acid (Aib) residues, were protected at the N-terminus with a carboxybenzyl group (Z) and at the C-terminus carried either a carboxylic acid or an isophthalic acid (Ipa) anchor group to form Z-(Aib)6-COOH or Z-(Aib)6-Ipa, respectively. Using a combination of vibrational and photoemission spectroscopies, bonding of the two peptides to TiO2 surfaces (either nanostructured or single-crystal TiO2(110)) was found to be highly dependent on the anchor group, with Ipa establishing a monolayer much more efficiently than COOH. Furthermore, a monolayer of Z-(Aib)6-Ipa on TiO2(110) was exposed for different binding times to a solution of a zinc tetraphenylporphyrin (ZnTPP) derivative terminated with an Ipa anchor group (ZnTPP-P-Ipa). Photoemission spectroscopy revealed that ZnTPP-P-Ipa partly displaced Z-(Aib)6-Ipa, forming a coadsorbed monolayer on the oxide surface. The presence of the peptide molecular dipole shifted the HOMO levels of the ZnTPP group to lower energy by ∼300 meV, in accordance with a simple parallel plate capacitor model. These results suggest that a mixed-layer approach, involving coadsorption of a strong molecular dipole compound with a chromophore, is a versatile method to shift the energy levels of such chromophores with respect to the band edges of the substrate.


Assuntos
Ácidos Aminoisobutíricos/química , Oligopeptídeos/química , Titânio/química , Modelos Moleculares , Nanoestruturas/química , Oligopeptídeos/síntese química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Phys Chem Chem Phys ; 19(36): 24412-24420, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28808721

RESUMO

In this perspective we present a comprehensive analysis of the energy level alignment at the interface between an organic monolayer (organic = perylenetetracarboxylic dianhydride, PTCDA, zinc tetraphenylporphyrin, Zn-TPP, and tetracyanoquinodimethane, TCNQ) and a prototypical oxide surface, TiO2(110), looking for universal behaviours. PTCDA shows a physisorbed interaction with TiO2 and a small interface dipole potential with its highest occupied molecular orbital (HOMO) energy level located in the oxide energy gap and the lowest occupied molecular orbital (LUMO) energy level located above the oxide conduction band minimum, EC. We analyse how the interface barrier depends on an external bias potential between the organic layer and the oxide surface, Δ, and find for this interface that the screening parameter S = d|(EC - HOMO)|dΔ is close to 1. In the second case, the Zn-TPP monolayer shows a moderate chemisorbed interaction with some charge transfer from the molecule to the oxide and a significant interface dipole potential, in such a way that S decreases to around 0.8. In the TCNQ/TiO2(110) case, the TCNQ molecules present a strong chemical interaction with the oxide; the LUMO energy level is located in the oxide energy gap in such a way that one electron is transferred from the oxide to the organic molecule; we also find that in this case S ≈ 0.5. All these cases can be integrated within a universal behaviour when (EC - HOMO) is calculated as a function of Δ; that function presents a zig-zag curve with a central part having an S-slope, and two plateaus associated with either the LUMO or the HOMO energy levels crossing the oxide Fermi level. In these plateaus, a Coulomb blockade regime arises and a pace charge layer develops in the oxide surface.

5.
J Chem Phys ; 146(5): 054704, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178800

RESUMO

Monolayer to multilayer ultrathin films of the ionic liquid (IL) 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide have been prepared on Au(111) and Cu(100) surfaces using physical vapor deposition. The ion-surface interactions are studied using a combination of scanning tunnel microscopy, as well as ultraviolet and x-ray photoemission spectroscopies. It is found that the IL does not decompose at the surface of the metals, and that the IL interaction with the Cu(100) surface is much stronger than with the Au(111) surface. As a consequence, STM imaging at room temperature results in more stable imaging at the monolayer coverage on Cu(100) than on Au(111), and work function measurements indicate a large interface dipole upon deposition of a monolayer of IL on Cu. Additional IL depositions on the two surfaces result in two distinct behaviors for the IL core levels: a gradual energy shift of the core levels on Au and a set of two well defined monolayer and multilayer core level components found at fixed energies on Cu, due to the formation of a tightly bound monolayer. Finally, it is proposed that the particularly strong cation-Cu interaction leads to stabilization of the anion and prevents its decomposition at the surface of Cu(100).

6.
J Am Chem Soc ; 137(16): 5397-405, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25826321

RESUMO

Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between E(CT) and qV(OC) of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.

7.
Chemistry ; 21(40): 14218-28, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26263021

RESUMO

Catalytically active MnOx species have been reported to form in situ from various Mn-complexes during electrocatalytic and solution-based water oxidation when employing cerium(IV) ammonium ammonium nitrate (CAN) oxidant as a sacrificial reagent. The full structural characterization of these oxides may be complicated by the presence of support material and lack of a pure bulk phase. For the first time, we show that highly active MnOx catalysts form without supports in situ under photocatalytic conditions. Our most active (4)MnOx catalyst (∼0.84 mmol O2 mol Mn(-1) s(-1)) forms from a Mn4O4 bearing a metal-organic framework. (4)MnOx is characterized by pair distribution function analysis (PDF), Raman spectroscopy, and HR-TEM as a disordered, layered Mn-oxide with high surface area (216 m(2) g(-1)) and small regions of crystallinity and layer flexibility. In contrast, the (S)MnOx formed from Mn(2+) salt gives an amorphous species of lower surface area (80 m(2) g(-1)) and lower activity (∼0.15 mmol O2 mol Mn(-1) s(-1)). We compare these catalysts to crystalline hexagonal birnessite, which activates under the same conditions. Full deconvolution of the XPS Mn2p3/2 core levels detects enriched Mn(3+) and Mn(2+) content on the surfaces, which indicates possible disproportionation/comproportionation surface equilibria.

8.
Faraday Discuss ; 185: 497-506, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426503

RESUMO

The electronic properties of three porphyrin-bridge-anchor photosensitizers are reported with (1a, 1e, 3a and 3e) or without (2a and 2e) an intramolecular dipole in the bridge. The presence and orientation of the bridge dipole is hypothesized to influence the photovoltaic properties due to variations in the intrinsic dipole at the semiconductor-molecule interface. Electrochemical studies of the porphyrin-bridge-anchor dyes self-assembled on mesoporous nanoparticle ZrO2 films, show that the presence or direction of the bridge dipole does not have an observable effect on the electronic properties of the porphyrin ring. Subsequent photovoltaic measurements of nanostructured TiO2 semiconductor films in dye sensitized solar cells show a reduced photocurrent for photosensitizers 1a and 3a containing a bridge dipole. However, cooperative increased binding of the 1a + 3a co-sensitized device demonstrates that dye packing overrides any differences due to the presence of the small internal dipole.

9.
Phys Chem Chem Phys ; 17(23): 15218-25, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25989751

RESUMO

The phase evolution and morphology of the solid state FeF2 conversion reaction with Li has been characterized using angle-resolved X-ray photoelectron spectroscopy (ARXPS). An epitaxial FeF2(110) film was grown on a MgF2(110) single crystal substrate and exposed to atomic lithium in an ultra-high vacuum chamber. A series of ARXPS spectra was taken after each Li exposure to obtain depth resolved chemical state information. The Li-FeF2 reaction initially proceeded in a layer-by-layer fashion to a depth of ∼1.2 nm. Beyond this depth, the reaction front became non-planar, and regions of unreacted FeF2 were observed in the near-surface region. This reaction progression is consistent with molecular dynamics simulations. Additionally, the composition of the reacted layer was similar to that of electrochemically reacted FeF2 electrodes. An intermediary compound FexLi2-2xF2, attributed to iron substituted in the LiF lattice, has been identified using XPS. These measurements provide insight into the atomistics and phase evolution of high purity FeF2 conversion electrodes without contamination from electrolytes and binders, and the results partially explain the capacity losses observed in cycled FeF2 electrodes.

10.
Adv Mater ; 35(35): e2302871, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37394983

RESUMO

Incorporating crystalline organic semiconductors into electronic devices requires understanding of heteroepitaxy given the ubiquity of heterojunctions in these devices. However, while rules for commensurate epitaxy of covalent or ionic inorganic material systems are known to be dictated by lattice matching constraints, rules for heteroepitaxy of molecular systems are still being written. Here, it is found that lattice matching alone is insufficient to achieve heteroepitaxy in molecular systems, owing to weak intermolecular forces that describe molecular crystals. It is found that, in addition, the lattice matched plane also must be the lowest energy surface of the adcrystal to achieve one-to-one commensurate molecular heteroepitaxy over a large area. Ultraviolet photoelectron spectroscopy demonstrates the lattice matched interface to be of higher electronic quality than a disordered interface of the same materials.

11.
Adv Mater ; 34(43): e2205055, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36026556

RESUMO

The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead-halide perovskite field-effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor-phase epitaxy technique that results in large-area single-crystalline cesium lead bromide (CsPbBr3 ) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin-film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap-free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall-effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2 V-1 s-1 at room temperature to ≈250 cm2 V-1 s-1 at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon-limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high-performance perovskite electronic devices.

12.
Chemistry ; 16(35): 10735-43, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20648484

RESUMO

We report a solution-phase synthetic route to copper nanoparticles with controllable size and shape. The synthesis of the nanoparticles is achieved by the reduction of copper(II) salt in aqueous solution with hydrazine under air atmosphere in the presence of poly(acrylic acid) (PAA) as capping agent. The results suggest that the pH plays a key role for the formation of pure copper nanoparticles, whereas the concentration of PAA is important for controlling the size and geometric shape of the nanoparticles. The average size of the copper nanoparticles can be varied from 30 to 80 nm, depending on the concentration of PAA. With a moderate amount of PAA, faceted crystalline copper nanoparticles are obtained. The as-synthesized copper nanoparticles appear red in color and are stable for weeks, as confirmed by UV/Vis and X-ray photoemission (XPS) spectroscopy. The faceted crystalline copper nanoparticles serve as an effective catalyst for N-arylation of heterocycles, such as the C--N coupling reaction between p-nitrobenzyl chloride and morpholine producing 4-(4-nitrophenyl)morpholine in an excellent yield under mild reaction conditions. Furthermore, the nanoparticles are proven to be versatile as they also effectively catalyze the three-component, one-pot Mannich reaction between p-substituted benzaldehyde, aniline, and acetophenone affording a 100% conversion of the limiting reactant (aniline).


Assuntos
Cobre/química , Hidrazinas/química , Nanopartículas Metálicas/química , Morfolinas/química , Nitrobenzenos/química , Sais/química , Resinas Acrílicas/química , Catálise , Cristalografia por Raios X , Estrutura Molecular , Soluções , Espectrofotometria Ultravioleta , Propriedades de Superfície
13.
Langmuir ; 26(24): 18742-9, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090656

RESUMO

The interactions of cyanide species with a copper (001) surface were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Adsorbed cyanide species (CN(a)) undergo recombinative desorption evolving molecular cyanogen (C(2)N(2)). As the adsorbed CN species charge upon adsorption, mutually repulsive dipolar interactions lead to a marked desorption energy reduction with increasing CN(a) coverages. Two new TPD analysis approaches were developed, which used only accurately discernible observables and which do not assume constant desorption energies, E(d), and pre-exponential values, ν. These two approaches demonstrated a linear variation of E(d) with instantaneous coverage. The first approach involved an analysis of the variations of desorption peak asymmetry with initial CN coverages. The second quantitative approach utilized only temperatures and intensities of TPD peaks, together with deduced surface coverages at the peak maxima, also as a function of initial surface coverages. Parameters derived from the latter approach were utilized as initial inputs for a comprehensive curve fit analysis technique. Excellent fits for all experimental desorption curves were produced in simulations. The curve fit analysis confirms that the activation energy of desorption of 170-180 kJ/mol at low coverage decreases by up to 14-15 kJ/mol at CN saturation.

14.
J Phys Chem B ; 124(36): 7909-7917, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32809831

RESUMO

The valence band spectra of three cyano-ionic liquids based on 1-ethyl-3-methylimidazolium (Im2,1+) paired with thiocyanate (SCN-), dicyanamide (N(CN)2-), and tricyanomethanide (C(CN)3-) have been measured using ultraviolet and X-ray photoemission spectroscopy. Experimental spectra are compared to their corresponding density of states, weighted by photoemission cross sections, calculated for clusters of ions pairs of increasing size. Thus, this study bridges single ion approaches to 3D periodical DFT studies and enables the exploration of the different aspects of electronic structure establishment in ILs. Even for a relatively small cluster size, the relative energy of cation and anions states shifts by an amount that corresponds closely to that expected from the Madelung energy of a bulk IL, and the photoemission cross section-weighted DOS spectra are in good agreement with the measured valence bands. Trends in the relative energy and ionic character of the frontier orbitals across this series of cyano-ILs are discussed.

15.
J Am Chem Soc ; 130(32): 10576-87, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18636724

RESUMO

Alanes are believed to be the mass transport intermediate in many hydrogen storage reactions and thus important for understanding rehydrogenation kinetics for alanates and AlH3. Combining density functional theory (DFT) and surface infrared (IR) spectroscopy, we provide atomistic details about the formation of alanes on the Al(111) surface, a model environment for the rehydrogenation reactions. At low coverage, DFT predicts a 2-fold bridge site adsorption for atomic hydrogen at 1150 cm(-1), which is too weak to be detected by IR but was previously observed in electron energy loss spectroscopy. At higher coverage, steps are the most favorable adsorption sites for atomic H adsorption, and it is likely that the AlH3 molecules form (initially strongly bound to steps) at saturation. With increasing exposures AlH3 is extracted from the step edge and becomes highly mobile on the terraces in a weakly bound state, accounting for step etching observed in previous STM studies. The mobility of these weakly bound AlH3 molecules is the key factor leading to the growth of larger alanes through AlH3 oligomerization. The subsequent decomposition and desorption of alanes is also investigated and compared to previous temperature programmed desorption studies.

16.
J Phys Chem B ; 122(2): 534-542, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28631926

RESUMO

The adsorption geometry and energy alignment at the PTCDA/TiO2(110) interface are investigated using a combination of experimental and theoretical approaches. The energy alignment is determined experimentally from the occupied and unoccupied states electronic structure measured using X-ray and UV photoemission and inverse photoemission, respectively. Two possible adsorption geometries compatible with previous studies, a flat geometry and a tilted geometry, were explored using DFT techniques, in order to obtain theoretical STM images and energy alignment at the interface. Both STM images simulation and resulting energy alignment point to a tilted geometry for PTCDA on TiO2(110).

17.
J Phys Chem C Nanomater Interfaces ; 120(8): 4430-4437, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26998188

RESUMO

The adsorption of a densely packed Zinc(II) tetraphenylporphyrin monolayer on a rutile TiO2(110)-(1×1) surface has been studied using a combination of experimental and theoretical methods, aimed at analyzing the relation between adsorption behavior and barrier height formation. The adsorption configuration of ZnTPP was determined from scanning tunnel microscopy (STM) imaging, density functional theory (DFT) calculations and STM image simulation. The corresponding energy alignment was experimentally determined from X-ray and UV-photoemission spectroscopies and inverse photoemission spectroscopy. These results were found in good agreement with an appropriately corrected DFT model, pointing to the importance of local bonding and intermolecular interactions in the establishment of barrier heights.

18.
J Phys Chem Lett ; 7(17): 3434-9, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27530545

RESUMO

Measuring and understanding electric fields in multilayered materials at the nanoscale remains a challenging problem impeding the development of novel devices. At this scale, it is far from obvious that materials can be accurately described by their intrinsic bulk properties, and considerations of the interfaces between layered materials become unavoidable for a complete description of the system's electronic properties. Here, a general approach to the direct measurement of nanoscale internal fields is proposed. Small spot X-ray photoemission was performed on a biased graphene/SiO2/Si structure in order to experimentally determine the potential profile across the system, including discontinuities at the interfaces. Core levels provide a measure of the local potential and are used to reconstruct the potential profile as a function of the depth through the stack. It is found that each interface plays a critical role in establishing the potential across the dielectric, and the origin of the potential discontinuities at each interface is discussed.

19.
J Phys Chem B ; 109(26): 12899-908, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16852601

RESUMO

Using a combination of local -- scanning tunneling microscopy -- and spatially integrated, but chemically sensitive probes -- X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy -- we have examined how 3-butenenitrile reacts with the Si(001)-2 x 1 surface at room temperature. Electron spectroscopies indicate three different nitrogen chemical bonds: a Si-C=N-Si bond, a C=C=N cumulative double bond, and a CN moiety datively bonded to a silicon atom. All molecular imprints detected by scanning tunneling microscopy (STM) involve two adjacent silicon dimers in the same row. The three geometries we propose -- a double di-sigma bonding via the CN and the C=C, a cumulative double bond formation associated with alphaC-H bond dissociation, and a di-sigma vinyl bonding plus a CN datively bonded to a silicon atom -- are all compatible with electron spectroscopies and data. Real-time Auger yield kinetic measurements show that the double di-sigma bonding geometry is unstable when exposed to a continuous flux of 3-butenenitrile molecules, as the Si-C=N-Si unit transforms into a CN moiety. A model is proposed to explain this observation.

20.
J Phys Chem C Nanomater Interfaces ; 119(38): 22086-22091, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26877826

RESUMO

Three driving forces control the energy level alignment between transition-metal oxides and organic materials: the chemical interaction between the two materials, the organic electronegativity and the possible space charge layer formed in the oxide. This is illustrated in this study by analyzing experimentally and theoretically a paradigmatic case, the TiO2(110) / TCNQ interface: due to the chemical interaction between the two materials, the organic electron affinity level is located below the Fermi energy of the n-doped TiO2. Then, one electron is transferred from the oxide to this level and a space charge layer is developed in the oxide inducing an important increase in the interface dipole and in the oxide work-function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA