Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Blood ; 143(16): 1670-1675, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38427750

RESUMO

ABSTRACT: Activated protein C (APC) was shown to release extracellular vesicles (EVs). APC bound to the EVs was thought to be responsible for cytoprotection. Our study demonstrates that the cytoprotective effects of APC-released EVs are independent of APC. APC-released EVs carry anti-inflammatory microRNAs in their cargo.


Assuntos
Citoproteção , Vesículas Extracelulares , Proteína C , Comunicação Celular , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Proteína C/metabolismo , Humanos
2.
Blood ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820589

RESUMO

Chronic kidney disease (CKD) is a major contributor to morbidity and mortality in sickle cell disease (SCD). Anemia, induced by chronic persistent hemolysis, is associated with progressive deterioration of renal health resulting in CKD. Moreover, patients with SCD experience acute kidney injury (AKI), a risk factor for CKD, often during vasoocclusive crisis associated with acute intravascular hemolysis. However, the mechanisms of the hemolysis-driven pathogenesis of the AKI-to-CKD transition in SCD remain elusive. Here, we investigated the role of increased renovascular rarefaction and the resulting substantial loss of vascular endothelial protein C receptor (EPCR) on the progressive deterioration of renal function in transgenic SCD mice. Multiple hemolytic events raised circulating levels of soluble EPCR (sEPCR) indicating loss of EPCR from the cell surface. Using bone marrow transplantation and super-resolution ultrasound imaging, we demonstrated that SCD mice overexpressing EPCR were protective against heme-induced CKD development. In a cohort of SCD patients, plasma sEPCR was significantly higher in individuals with CKD than in those without CKD. This study concludes that multiple hemolytic events may trigger CKD in SCD through the gradual loss of renovascular EPCR. Thus, restoration of EPCR may be a therapeutic target, and plasma sEPCR can be developed as a prognostic marker for sickle CKD.

3.
J Immunol ; 212(4): 505-512, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315950

RESUMO

As COVID-19 continues, an increasing number of patients develop long COVID symptoms varying in severity that last for weeks, months, or longer. Symptoms commonly include lingering loss of smell and taste, hearing loss, extreme fatigue, and "brain fog." Still, persistent cardiovascular and respiratory problems, muscle weakness, and neurologic issues have also been documented. A major problem is the lack of clear guidelines for diagnosing long COVID. Although some studies suggest that long COVID is due to prolonged inflammation after SARS-CoV-2 infection, the underlying mechanisms remain unclear. The broad range of COVID-19's bodily effects and responses after initial viral infection are also poorly understood. This workshop brought together multidisciplinary experts to showcase and discuss the latest research on long COVID and chronic inflammation that might be associated with the persistent sequelae following COVID-19 infection.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , SARS-CoV-2 , Inflamação , Progressão da Doença
4.
Blood ; 139(1): 118-133, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34469511

RESUMO

Coagulation protease, factor VIIa (FVIIa), binds to endothelial cell protein C receptor (EPCR) and induces anti-inflammatory and endothelial barrier protective responses via protease-activated receptor-1 (PAR1)-mediated, biased signaling. Our recent studies had shown that the FVIIa-EPCR-PAR1 axis induces the release of extracellular vesicles (EVs) from endothelial cells. In the present study, we investigated the mechanism of FVIIa release of endothelial EVs (EEVs) and the contribution of FVIIa-released EEVs to anti-inflammatory and vascular barrier protective effects, in both in vitro and in vivo models. Multiple signaling pathways regulated FVIIa release of EVs from endothelial cells, but the ROCK-dependent pathway appeared to be a major mechanism. FVIIa-released EEVs were enriched with anti-inflammatory microRNAs (miRs), mostly miR10a. FVIIa-released EEVs were taken up readily by monocytes/macrophages and endothelial cells. The uptake of FVIIa-released EEVs by monocytes conferred anti-inflammatory phenotype to monocytes, whereas EEV uptake by endothelial cells resulted in barrier protection. In additional experiments, EEV-mediated delivery of miR10a to monocytes downregulated the expression of TAK1 and activation of the NF-κB-mediated inflammatory pathway. In in vivo experiments, administration of FVIIa-released EEVs to wild-type mice attenuated LPS-induced increased inflammatory cytokines in plasma and vascular leakage into vital tissues. The incorporation of anti-miR10a into FVIIa-released EEVs diminished the ability of FVIIa-released EEVs to confer cytoprotective effects. Administration of the ROCK inhibitor Y27632, which significantly inhibits FVIIa release of EEVs into the circulation, to mice attenuated the cytoprotective effects of FVIIa. Overall, our study revealed novel insights into how FVIIa induces cytoprotective effects and communicates with various cell types.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fator VIIa/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Células THP-1
5.
Blood ; 140(13): 1549-1564, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895897

RESUMO

Deep vein thrombosis (DVT) is the third most common cause of cardiovascular mortality. Several studies suggest that DVT occurs at the intersection of dysregulated inflammation and coagulation upon activation of inflammasome and secretion of interleukin 1ß (IL-1ß) in restricted venous flow conditions. Our recent studies showed a signaling adapter protein, Gab2 (Grb2-associated binder 2), plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that Gab2 facilitates the assembly of the CBM (CARMA3 [CARD recruited membrane-associated guanylate kinase protein 3]-BCL-10 [B-cell lymphoma 10]-MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) signalosome, which mediates the activation of Rho and NF-κB in endothelial cells. Gene silencing of Gab2 or MALT1, the effector signaling molecule in the CBM signalosome, or pharmacological inhibition of MALT1 with a specific inhibitor, mepazine, significantly reduced IL-1ß-induced Rho-dependent exocytosis of P-selectin and von Willebrand factor (VWF) and the subsequent adhesion of neutrophils to endothelial cells. MALT1 inhibition also reduced IL-1ß-induced NF-κB-dependent expression of tissue factor and vascular cell adhesion molecule 1. Consistent with the in vitro data, Gab2 deficiency or pharmacological inhibition of MALT1 suppressed the accumulation of monocytes and neutrophils at the injury site and attenuated venous thrombosis induced by the inferior vena cava ligation-induced stenosis or stasis in mice. Overall, our data reveal a previously unrecognized role of the Gab2-MALT1 axis in thromboinflammation. Targeting the Gab2-MALT1 axis with MALT1 inhibitors may become an effective strategy to treat DVT by suppressing thromboinflammation without inducing bleeding complications.


Assuntos
Trombose , Trombose Venosa , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Células Endoteliais/metabolismo , Guanilato Quinases/metabolismo , Inflamassomos/metabolismo , Inflamação , Mediadores da Inflamação , Interleucina-1beta/metabolismo , Camundongos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , NF-kappa B/metabolismo , Selectina-P/metabolismo , Tromboinflamação , Tromboplastina/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Trombose Venosa/genética , Fator de von Willebrand/metabolismo
6.
Blood ; 139(18): 2830-2841, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143636

RESUMO

Recurrent spontaneous or trauma-related bleeding into joints in hemophilia leads to hemophilic arthropathy (HA), a debilitating joint disease. Treatment of HA consists of preventing joint bleeding by clotting factor replacement, and in extreme cases, orthopedic surgery. We recently showed that administration of endothelial cell protein C receptor (EPCR) blocking monoclonal antibodies (mAb) markedly reduced the severity of HA in factor VIII (FVIII)-/- mice. EPCR blocking inhibits activated protein C (APC) generation and EPCR-dependent APC signaling. The present study was aimed to define the role of inhibition of APC anticoagulant activity, APC signaling, or both in suppressing HA. FVIII-/- mice were treated with a single dose of isotype control mAb, MPC1609 mAb, that inhibits anticoagulant, and signaling properties of APC, or MAPC1591 mAb that only blocks the anticoagulant activity of APC. Joint bleeding was induced by needle puncture injury. HA was evaluated by monitoring joint bleeding, change in joint diameter, and histopathological analysis of joint tissue sections for synovial hypertrophy, macrophage infiltration, neoangiogenesis, cartilage degeneration, and chondrocyte apoptosis. No significant differences were observed between MPC1609 and MAPC1591 in inhibiting APC anticoagulant activity in vitro and equally effective in correcting acute bleeding induced by the saphenous vein incision in FVIII-/- mice. Administration of MAPC1591, and not MPC1609, markedly reduced the severity of HA. MAPC1591 inhibited joint bleed-induced inflammatory cytokine interleukin-6 expression and vascular leakage in joints, whereas MPC1609 had no significant effect. Our data show that an mAb that selectively inhibits APC's anticoagulant activity without compromising its cytoprotective signaling offers a therapeutic potential alternative to treat HA.


Assuntos
Artrite , Hemofilia A , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Receptor de Proteína C Endotelial , Hemartrose/tratamento farmacológico , Hemartrose/patologia , Hemartrose/prevenção & controle , Hemofilia A/complicações , Hemofilia A/tratamento farmacológico , Hemorragia , Camundongos , Proteína C/metabolismo
7.
Theor Appl Genet ; 137(6): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713254

RESUMO

KEY MESSAGE: By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.


Assuntos
Mapeamento Cromossômico , Mariposas , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/parasitologia , Oryza/imunologia , Animais , Mariposas/fisiologia , Polimorfismo de Nucleotídeo Único , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genômica/métodos , Fenótipo , Multiômica
8.
Arterioscler Thromb Vasc Biol ; 43(1): 64-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412194

RESUMO

BACKGROUND: Our recent studies suggest that sphingomyelin levels in the plasma membrane influence TF (tissue factor) procoagulant activity. The current study was performed to investigate how alterations to sphingomyelin metabolic pathway would affect TF procoagulant activity and thereby affect hemostatic and thrombotic processes. METHODS: Macrophages and endothelial cells were transfected with specific siRNAs or infected with adenoviral vectors to alter sphingomyelin levels in the membrane. TF activity was measured in factor X activation assay. Saphenous vein incision-induced bleeding and the inferior vena cava ligation-induced flow restriction mouse models were used to evaluate hemostasis and thrombosis, respectively. RESULTS: Overexpression of SMS (sphingomyelin synthase) 1 or SMS2 in human monocyte-derived macrophages suppresses ATP-stimulated TF procoagulant activity, whereas silencing SMS1 or SMS2 increases the basal cell surface TF activity to the same level as of ATP-decrypted TF activity. Consistent with the concept that sphingomyelin metabolism influences TF procoagulant activity, silencing of acid sphingomyelinase or neutral sphingomyelinase 2 or 3 attenuates ATP-induced enhanced TF procoagulant activity in macrophages and endothelial cells. Niemann-Pick disease fibroblasts with a higher concentration of sphingomyelin exhibited lower TF activity compared with wild-type fibroblasts. In vivo studies revealed that LPS+ATP-induced TF activity and thrombin generation were attenuated in ASMase-/- mice, while their levels were increased in SMS2-/- mice. Further studies revealed that acid sphingomyelinase deficiency leads to impaired hemostasis, whereas SMS2 deficiency increases thrombotic risk. CONCLUSIONS: Overall, our data indicate that alterations in sphingomyelin metabolism would influence TF procoagulant activity and affect hemostatic and thrombotic processes.


Assuntos
Hemostáticos , Trombose , Camundongos , Humanos , Animais , Esfingomielinas , Esfingomielina Fosfodiesterase/genética , Células Endoteliais/metabolismo , Trombose/genética , Hemostasia , Trifosfato de Adenosina
9.
Chem Biodivers ; : e202401235, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008533

RESUMO

Benzepril-based novel trizole derivatives are being explored as potential anticancer agents, designed with an N-substituted 1,2,3-triazole moiety linked to benzepril's N-1 position via a methylene bridge. An ultrasound irradiated CuAAC method was used to prepare all these compounds and evaluated their anti-proliferative activities against cancer and drug-resistant cell lines. While some of these compounds demonstrated anti-proliferative activity towards leukemic cancer cell line K562, two of them displayed complete inhibitory activity.  Interestingly, the compounds 5n and 5o showed potent activity against imatinib-resistant cell lines suggesting their promise to overcome cancer drug resistance. Furthermore, molecular docking analysis revealed that compounds 5n and 5o have higher predicted sensitivity towards ACE protein when compared to benazepril and lisinopril indicating their value as potential drug lead molecules. This research introduces a distinctive approach by employing ultrasound to facilitate CuAAC reactions in medicinal chemistry.

10.
Blood ; 138(4): 344-349, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34075401

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with the hypercoagulable state. Tissue factor (TF) is the primary cellular initiator of coagulation. Most of the TF expressed on cell surfaces remains cryptic. Sphingomyelin (SM) is responsible for maintaining TF in the encrypted state, and hydrolysis of SM by acid sphingomyelinase (ASMase) increases TF activity. ASMase was shown to play a role in virus infection biology. In the present study, we investigated the role of ASMase in SARS-CoV-2 infection-induced TF procoagulant activity. Infection of human monocyte-derived macrophages (MDMs) with SARS-CoV-2 spike protein pseudovirus (SARS-CoV-2-SP-PV) markedly increased TF procoagulant activity at the cell surface and released TF+ extracellular vesicles. The pseudovirus infection did not increase either TF protein expression or phosphatidylserine externalization. SARS-CoV-2-SP-PV infection induced the translocation of ASMase to the outer leaflet of the plasma membrane, which led to the hydrolysis of SM in the membrane. Pharmacologic inhibitors or genetic silencing of ASMase attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Inhibition of the SARS-CoV-2 receptor, angiotensin-converting enzyme-2, attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Overall, our data suggest that SARS-CoV-2 infection activates the coagulation by decrypting TF through activation of ASMase. Our data suggest that the US Food and Drug Administration-approved functional inhibitors of ASMase may help treat hypercoagulability in patients with COVID-19.


Assuntos
COVID-19/sangue , Macrófagos/virologia , Proteínas de Membrana/fisiologia , SARS-CoV-2 , Esfingomielina Fosfodiesterase/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Trombofilia/etiologia , Tromboplastina/fisiologia , Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/complicações , Micropartículas Derivadas de Células , Ativação Enzimática , Humanos , Hidrólise , Macrófagos/enzimologia , Terapia de Alvo Molecular , Plasmídeos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Virais/fisiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielinas/fisiologia , Trombofilia/sangue , Trombofilia/tratamento farmacológico , Trombofilia/enzimologia
11.
Blood ; 137(24): 3428-3442, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33534910

RESUMO

Recombinant factor FVIIa (rFVIIa) is used as a hemostatic agent to treat bleeding disorders in hemophilia patients with inhibitors and other groups of patients. Our recent studies showed that FVIIa binds endothelial cell protein C receptor (EPCR) and induces protease-activated receptor 1 (PAR1)-mediated biased signaling. The importance of FVIIa-EPCR-PAR1-mediated signaling in hemostasis is unknown. In the present study, we show that FVIIa induces the release of extracellular vesicles (EVs) from endothelial cells both in vitro and in vivo. Silencing of EPCR or PAR1 in endothelial cells blocked the FVIIa-induced generation of EVs. Consistent with these data, FVIIa treatment enhanced the release of EVs from murine brain endothelial cells isolated from wild-type (WT), EPCR-overexpressing, and PAR1-R46Q-mutant mice, but not EPCR-deficient or PAR1-R41Q-mutant mice. In vivo studies revealed that administration of FVIIa to WT, EPCR-overexpressing, and PAR1-R46Q-mutant mice, but not EPCR-deficient or PAR1-R41Q-mutant mice, increased the number of circulating EVs. EVs released in response to FVIIa treatment exhibit enhanced procoagulant activity. Infusion of FVIIa-generated EVs and not control EVs to platelet-depleted mice increased thrombin generation at the site of injury and reduced blood loss. Administration of FVIIa-generated EVs or generation of EVs endogenously by administering FVIIa augmented the hemostatic effect of FVIIa. Overall, our data reveal that FVIIa treatment, through FVIIa-EPCR-PAR1 signaling, releases EVs from the endothelium into the circulation, and these EVs contribute to the hemostatic effect of FVIIa.


Assuntos
Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Fator VIIa/farmacologia , Hemostasia/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptor PAR-1/metabolismo , Substituição de Aminoácidos , Animais , Vesículas Extracelulares/genética , Hemostasia/genética , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Receptor PAR-1/genética , Proteínas Recombinantes/farmacologia
12.
J Phys Chem A ; 127(34): 7070-7079, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37589487

RESUMO

Surface-enhanced Raman spectra (SERS) and electronic-structure-based properties are important tools for investigation of the molecular sensing ability of nanoparticles. The present computational study is intended to explore the sensing ability of Zn3O3 and Mg-containing Zn3O3 structures for CO2 molecules by CHEM effects of the SERS technique. Geometries of CO2-adsorbed Zn3O3, Zn2MgO3 (Mg as a substitutional impurity), and Zn3O3Mg (Mg as an interstitial impurity) structures are modeled using the B3LYP/6-31G(d,p) level of density functional theory. The Mg site of the Zn2MgO3 and Zn3O3Mg structures is preferential for the adsorption of CO2. The observed energy trends are supported by geometrical analysis, molecular orbital interactions, redshifts in CO2 vibrational modes, and topological properties. Raman activity enhancement of the CO2 symmetric vibrational mode is significant when the molecule is adsorbed at the Mg site of Zn3O3Mg. The observed Raman activity enhancement is supported by SERS spectra obtained from anharmonic calculations carried out on B3LYP/6-31G(d,p) geometries and substantiated by a larger change in the polarizability with energy corresponding to the symmetric vibrational mode of CO2. The TDDFT calculations, frequency-dependent polarizabilities, and charge transfer interactions show that Zn3O3Mg is a good substrate for sensing of CO2, with visible wavelengths, by resonance Raman effect. The trends with adsorption energy, Raman activity, and excited state properties are also substantiated by B3LYP/6-311+G(d,p) calculations.

13.
J Endocrinol Invest ; 46(9): 1881-1889, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36870016

RESUMO

PURPOSE: In this study, we aimed to identify risk factors for developing second primary malignancies (SPMs) in colorectal neuroendocrine neoplasms (NENs) patients and develop a competing-risk nomogram to predict SPMs' probabilities quantitatively. METHODS: Patients with colorectal NENs were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database during 2000-2013. Potential risk factors for SPMs' occurrence in colorectal NENs' patients were identified by the Fine and Gray's proportional sub-distribution hazards model. Then, a competing-risk nomogram was constructed to quantify SPMs' probabilities. The discriminative abilities and calibrations of this competing-risk nomogram were assessed by the area under the receiver-operating characteristic (ROC) curves (AUC) and calibration curves. RESULTS: We identified 11,017 colorectal NENs' patients, and randomly divided them into training (n = 7711 patients) and validation (n = 3306 patients) cohorts. In the whole cohort, 12.4% patients (n = 1369) had developed SPMs during the maximum follow-up of approximately 19 years (median 8.9 years). Sex, age, race, primary tumor location, and chemotherapy were identified as risk factors for SPMs' occurrence in colorectal NENs' patients. Such factors were selected to develop a competing-risk nomogram and showed excellent predictive ability for SPMs' occurrence (the 3-, 5-, and 10-year AUC values were 0.631, 0.632, and 0.629 in the training cohort and 0.665, 0.639, 0.624 in the validation cohort, respectively). CONCLUSIONS: This research identified risk factors for SPMs' occurrence in colorectal NENs' patients. Competing-risk nomogram was constructed and proved to have good performance.


Assuntos
Neoplasias Colorretais , Segunda Neoplasia Primária , Tumores Neuroendócrinos , Humanos , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/epidemiologia , Estudos Retrospectivos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Bases de Dados Factuais , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/epidemiologia
14.
Blood ; 135(25): 2211-2223, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32294155

RESUMO

We recently showed that clotting factor VIIa (FVIIa) binding to endothelial cell protein C receptor (EPCR) induces anti-inflammatory signaling and protects vascular barrier integrity. Inflammation and vascular permeability are thought to be major contributors to the development of hemophilic arthropathy following hemarthrosis. The present study was designed to investigate the potential influence of FVIIa interaction with EPCR in the pathogenesis of hemophilic arthropathy and its treatment with recombinant FVIIa (rFVIIa). For this, we first generated hemophilia A (FVIII-/-) mice lacking EPCR (EPCR-/-FVIII-/-) or overexpressing EPCR (EPCR++ FVIII-/-). Joint bleeding was induced in FVIII-/-, EPCR-/-FVIII-/-, and EPCR++FVIII-/- mice by needle puncture injury. Hemophilic synovitis was evaluated by monitoring joint bleeding, change in joint diameter, and histopathological analysis of joint tissue sections. EPCR deficiency in FVIII-/- mice significantly reduced the severity of hemophilic synovitis. EPCR deficiency attenuated the elaboration of interleukin-6, infiltration of macrophages, and neoangiogenesis in the synovium following hemarthrosis. A single dose of rFVIIa was sufficient to fully prevent the development of milder hemophilic synovitis in EPCR-/-FVIII-/- mice. The development of hemophilic arthropathy in EPCR-overexpressing FVIII-/- mice did not significantly differ from that of FVIII-/- mice, and 3 doses of rFVIIa partly protected against hemophilic synovitis in these mice. Consistent with the data that EPCR deficiency protects against developing hemophilic arthropathy, administration of a single dose of EPCR-blocking monoclonal antibodies markedly reduced hemophilic synovitis in FVIII-/- mice subjected to joint bleeding. The present data indicate that EPCR could be an attractive new target to prevent joint damage in hemophilia patients.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Receptor de Proteína C Endotelial/deficiência , Hemartrose/prevenção & controle , Hemofilia A/complicações , Animais , Anticorpos Monoclonais/farmacologia , Citocinas/fisiologia , Receptor de Proteína C Endotelial/antagonistas & inibidores , Receptor de Proteína C Endotelial/imunologia , Receptor de Proteína C Endotelial/fisiologia , Fator VIIa/uso terapêutico , Hemartrose/tratamento farmacológico , Hemartrose/etiologia , Hemartrose/fisiopatologia , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Camundongos , Camundongos Knockout , Punções/efeitos adversos , Ratos , Proteínas Recombinantes/uso terapêutico , Sinovite/etiologia , Sinovite/prevenção & controle
16.
Arterioscler Thromb Vasc Biol ; 41(1): 250-265, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028097

RESUMO

OBJECTIVE: TF (Tissue factor) plays a key role in hemostasis, but an aberrant expression of TF leads to thrombosis. The objective of the present study is to investigate the effect of 4-hydroxy-2-nonenal (HNE), the most stable and major oxidant produced in various disease conditions, on the release of TF+ microvesicles into the circulation, identify the source of TF+ microvesicles origin, and assess their effect on intravascular coagulation and inflammation. Approach and Results: C57BL/6J mice were administered with HNE intraperitoneally, and the release of TF+ microvesicles into circulation was evaluated using coagulation assays and nanoparticle tracking analysis. Various cell-specific markers were used to identify the cellular source of TF+ microvesicles. Vascular permeability was analyzed by the extravasation of Evans blue dye or fluorescein dextran. HNE administration to mice markedly increased the levels of TF+ microvesicles and thrombin generation in the circulation. HNE administration also increased the number of neutrophils in the lungs and elevated the levels of inflammatory cytokines in plasma. Administration of an anti-TF antibody blocked not only HNE-induced thrombin generation but also HNE-induced inflammation. Confocal microscopy and immunoblotting studies showed that HNE does not induce TF expression either in vascular endothelium or circulating monocytes. Microvesicles harvested from HNE-administered mice stained positively with CD248 and α-smooth muscle actin, the markers that are specific to perivascular cells. HNE was found to destabilize endothelial cell barrier integrity. CONCLUSIONS: HNE promotes the release of TF+ microvesicles from perivascular cells into the circulation. HNE-induced increased TF activity contributes to intravascular coagulation and inflammation.


Assuntos
Aldeídos/toxicidade , Micropartículas Derivadas de Células/efeitos dos fármacos , Inflamação/induzido quimicamente , Estresse Oxidativo , Tromboplastina/metabolismo , Trombose/induzido quimicamente , Actinas/metabolismo , Aldeídos/administração & dosagem , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Citocinas/sangue , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/sangue , Mediadores da Inflamação/sangue , Masculino , Camundongos Endogâmicos C57BL , Trombina/metabolismo , Trombose/sangue
17.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555120

RESUMO

Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Biomarcadores , Inflamação/metabolismo
18.
Am J Respir Cell Mol Biol ; 64(4): 477-491, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600743

RESUMO

Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.


Assuntos
Receptor de Proteína C Endotelial/deficiência , Pulmão/metabolismo , Pleura/metabolismo , Derrame Pleural/metabolismo , Pleurisia/metabolismo , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Carga Bacteriana , Células Cultivadas , Modelos Animais de Doenças , Receptor de Proteína C Endotelial/genética , Feminino , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pleura/microbiologia , Pleura/patologia , Derrame Pleural/microbiologia , Derrame Pleural/patologia , Derrame Pleural/fisiopatologia , Pleurisia/microbiologia , Pleurisia/patologia , Pleurisia/fisiopatologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Pneumonia Pneumocócica/fisiopatologia
19.
Blood ; 134(7): 645-655, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31262782

RESUMO

Tissue factor (TF) is a cofactor for factor VIIa and the primary cellular initiator of coagulation. Typically, most TF on cell surfaces exists in a cryptic coagulant-inactive state but are transformed to a procoagulant form (decryption) following cell activation. Our recent studies in cell model systems showed that sphingomyelin (SM) in the outer leaflet of the plasma membrane is responsible for maintaining TF in an encrypted state in resting cells, and the hydrolysis of SM leads to decryption of TF. The present study was carried out to investigate the relevance of this novel mechanism in the regulation of TF procoagulant activity in pathophysiology. As observed in cell systems, administration of adenosine triphosphate (ATP) to mice enhanced lipopolysaccharide (LPS)-induced TF procoagulant activity in monocytes. Treatment of mice with pharmacological inhibitors of acid sphingomyelinase (ASMase), desipramine and imipramine, attenuated ATP-induced TF decryption. Interestingly, ASMase inhibitors also blocked LPS-induced TF procoagulant activity without affecting the LPS-induced de novo synthesis of TF protein. Additional studies showed that LPS induced translocation of ASMase to the outer leaflet of the plasma membrane and reduced SM levels in monocytes. Studies using human monocyte-derived macrophages and endothelial cells further confirmed the role of ASMase in LPS- and cytokine-induced TF procoagulant activity. Overall, our data indicate that LPS- or cytokine-induced TF procoagulant activity requires the decryption of newly synthesized TF protein by ASMase-mediated hydrolysis of SM. The observation that ASMase inhibitors attenuate TF-induced coagulation raises the possibility of their therapeutic use in treating thrombotic disorders associated with aberrant expression of TF.


Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Tromboplastina/metabolismo , Trombose/metabolismo , Animais , Coagulação Sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Trombina/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 40(5): 1275-1288, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212848

RESUMO

OBJECTIVE: Recent studies showed that FVIIa (factor VIIa), upon binding to EPCR (endothelial cell protein C receptor), elicits endothelial barrier stabilization and anti-inflammatory effects via activation of PAR (protease-activated receptor)-1-mediated signaling. It is unknown whether FVIIa induces PAR1-dependent cytoprotective signaling through cleavage of PAR1 at the canonical site or a noncanonical site, similar to that of APC (activated protein C). Approach and Results: Mouse strains carrying homozygous R41Q (canonical site) or R46Q (noncanonical site) point mutations in PAR1 (QQ41-PAR1 and QQ46-PAR1 mice) were used to investigate in vivo mechanism of PAR1-dependent pharmacological beneficial effects of FVIIa. Administration of FVIIa reduced lipopolysaccharide-induced inflammation, barrier permeability, and VEGF (vascular endothelial cell growth factor)-induced barrier disruption in wild-type (WT) and QQ46-PAR1 mice but not in QQ41-PAR1 mice. In vitro signaling studies performed with brain endothelial cells isolated from WT, QQ41-PAR1, and QQ46-PAR1 mice showed that FVIIa activation of Akt (protein kinase B) in endothelial cells required R41 cleavage site in PAR1. Our studies showed that FVIIa cleaved endogenous PAR1 in endothelial cells, and FVIIa-cleaved PAR1 was readily internalized, unlike APC-cleaved PAR1 that remained on the cell surface. Additional studies showed that pretreatment of endothelial cells with FVIIa reduced subsequent thrombin-induced signaling. This process was dependent on ß-arrestin1. CONCLUSIONS: Our results indicate that in vivo pharmacological benefits of FVIIa in mice arise from PAR1-dependent biased signaling following the cleavage of PAR1 at the canonical R41 site. The mechanism of FVIIa-induced cytoprotective signaling is distinctly different from that of APC. Our data provide another layer of complexity of biased agonism of PAR1 and signaling diversity.


Assuntos
Anti-Inflamatórios/administração & dosagem , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator VIIa/administração & dosagem , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Receptor PAR-1/metabolismo , Animais , Modelos Animais de Doenças , Endocitose , Células Endoteliais/metabolismo , Endotoxinas , Feminino , Homozigoto , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Mutação Puntual , Receptor PAR-1/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA