Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 4803-4834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828205

RESUMO

The utilization of PD-1/PD-L1 inhibitors marks a significant advancement in cancer therapy. However, the efficacy of monotherapy is still disappointing in a substantial subset of patients, necessitating the exploration of combinational strategies. Emerging from the promising results of the KEYNOTE-942 trial, RNA-based therapies, particularly circRNAs and piRNAs, have distinguished themselves as innovative sensitizers to immune checkpoint inhibitors (ICIs). These non-coding RNAs, notable for their stability and specificity, were once underrecognized but are now known for their crucial roles in regulating PD-L1 expression and bolstering anti-cancer immunity. Our manuscript offers a comprehensive analysis of selected circRNAs and piRNAs, elucidating their immunomodulatory effects and mechanisms, thus underscoring their potential as ICIs enhancers. In conjunction with the recent Nobel Prize-awarded advancements in mRNA vaccine technology, our review highlights the transformative implications of these findings for cancer treatment. We also discuss the prospects of circRNAs and piRNAs in future therapeutic applications and research. This study pioneers the synergistic application of circRNAs and piRNAs as novel sensitizers to augment PD-1/PD-L1 inhibition therapy, demonstrating their unique roles in regulating PD-L1 expression and modulating immune responses. Our findings offer a groundbreaking approach for enhancing the efficacy of cancer immunotherapy, opening new avenues for treatment strategies. This abstract aims to encapsulate the essence of our research and the burgeoning role of these non-coding RNAs in enhancing PD-1/PD-L1 inhibition therapy, encouraging further investigation into this promising field.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Neoplasias , Receptor de Morte Celular Programada 1 , RNA Circular , RNA Interferente Pequeno , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Circular/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/genética , Imunoterapia/métodos , Animais , RNA de Interação com Piwi
2.
Cancer Med ; 13(7): e7092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581123

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS: Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3ß (GSK-3ß), p-Akt, p-GSK-3ß, ß-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS: H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/ß-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of ß-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3ß, and the expression of ß-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION: RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/ß-catenin signaling pathway.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Animais , Camundongos , Helicobacter pylori/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Camundongos Nus , Cromatografia Líquida , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Via de Sinalização Wnt , Neoplasias Gástricas/patologia , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
3.
Cancer Med ; 13(8): e7202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659391

RESUMO

BACKGROUND: Non-apoptotic cell death is presently emerging as a potential direction to overcome the apoptosis resistance of cancer cells. In the current study, a natural plant agent α-hederin (α-hed) induces caspase-independent paraptotic modes of cell death. PURPOSE: The present study is aimed to investigate the role of α-hed induces paraptosis and the associated mechanism of it. METHODS: The cell proliferation was detected by CCK-8. The cytoplasm organelles were observed under electron microscope. Calcium (Ca2+) level was detected by flow cytometry. Swiss Target Prediction tool analyzed the potential molecule targets of α-hed. Molecular docking methods were used to evaluate binding abilities of α-hed with targets. The expressions of genes and proteins were analyzed by RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. Xenograft models in nude mice were established to evaluate the anticancer effects in vivo. RESULTS: α-hed exerted significant cytotoxicity against a panel of CRC cell lines by inhibiting proliferation. Besides, it induced cytoplasmic vacuolation in all CRC cells. Electron microscopy images showed the aberrant dilation of endoplasmic reticulum and mitochondria. Both mRNA and protein expressions of Alg-2 interacting proteinX (Alix), the marker of paraptosis, were inhibited by α-hed. Besides, both Swiss prediction and molecular docking showed that the structure of α-hed could tightly target to GPCRs. GPCRs were reported to activate the phospholipase C (PLC)-ß3/ inositol 1,4,5-trisphosphate receptor (IP3R)/ Ca2+/ protein kinase C alpha (PKCα) pathway, and we then found all proteins and mRNA expressions of PLCß3, IP3R, and PKCα were increased by α-hed. After blocking the GPCR signaling, α-hed could not elevate Ca2+ level and showed less CRC cell cytotoxicity. MAPK cascade is the symbol of paraptosis, and we then demonstrated that α-hed activated MAPK cascade by elevating Ca2+ flux. Since non-apoptotic cell death is presently emerging as a potential direction to overcome chemo-drug resistance, we then found α-hed also induced paraptosis in 5-fluorouracil-resistant (5-FU-R) CRC cells, and it reduced the growth of 5-FU-R CRC xenografts. CONCLUSIONS: Collectively, our findings proved α-hed as a promising candidate for inducing non-apoptotic cell death, paraptosis. It may overcome the resistance of apoptotic-based chemo-resistance in CRC.


Assuntos
Cálcio , Proliferação de Células , Neoplasias Colorretais , Ácido Oleanólico , Paraptose , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Saponinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA