Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314705

RESUMO

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Oftalmopatias Hereditárias/genética , Deficiência Intelectual/genética , Carioferinas/genética , Anormalidades Musculoesqueléticas/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Alelos , Sequência de Aminoácidos , Animais , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Mutação , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sequenciamento Completo do Genoma , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
2.
Am J Hum Genet ; 105(5): 907-920, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31607425

RESUMO

We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.


Assuntos
Deficiências do Desenvolvimento/genética , Nanismo/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação/genética , Adulto , Alelos , Animais , Criança , Espinhas Dendríticas/genética , Drosophila/genética , Feminino , Humanos , Masculino , Camundongos , Arábia Saudita , Sinapses/genética , Adulto Jovem
3.
J Neurosci ; 40(42): 7999-8024, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928889

RESUMO

In multipolar vertebrate neurons, action potentials (APs) initiate close to the soma, at the axonal initial segment. Invertebrate neurons are typically unipolar with dendrites integrating directly into the axon. Where APs are initiated in the axons of invertebrate neurons is unclear. Voltage-gated sodium (NaV) channels are a functional hallmark of the axonal initial segment in vertebrates. We used an intronic Minos-Mediated Integration Cassette to determine the endogenous gene expression and subcellular localization of the sole NaV channel in both male and female Drosophila, para Despite being the only NaV channel in the fly, we show that only 23 ± 1% of neurons in the embryonic and larval CNS express para, while in the adult CNS para is broadly expressed. We generated a single-cell transcriptomic atlas of the whole third instar larval brain to identify para expressing neurons and show that it positively correlates with markers of differentiated, actively firing neurons. Therefore, only 23 ± 1% of larval neurons may be capable of firing NaV-dependent APs. We then show that Para is enriched in an axonal segment, distal to the site of dendritic integration into the axon, which we named the distal axonal segment (DAS). The DAS is present in multiple neuron classes in both the third instar larval and adult CNS. Whole cell patch clamp electrophysiological recordings of adult CNS fly neurons are consistent with the interpretation that Nav-dependent APs originate in the DAS. Identification of the distal NaV localization in fly neurons will enable more accurate interpretation of electrophysiological recordings in invertebrates.SIGNIFICANCE STATEMENT The site of action potential (AP) initiation in invertebrates is unknown. We tagged the sole voltage-gated sodium (NaV) channel in the fly, para, and identified that Para is enriched at a distal axonal segment. The distal axonal segment is located distal to where dendrites impinge on axons and is the likely site of AP initiation. Understanding where APs are initiated improves our ability to model neuronal activity and our interpretation of electrophysiological data. Additionally, para is only expressed in 23 ± 1% of third instar larval neurons but is broadly expressed in adults. Single-cell RNA sequencing of the third instar larval brain shows that para expression correlates with the expression of active, differentiated neuronal markers. Therefore, only 23 ± 1% of third instar larval neurons may be able to actively fire NaV-dependent APs.


Assuntos
Segmento Inicial do Axônio/metabolismo , Proteínas de Drosophila/biossíntese , Drosophila/metabolismo , Neurônios/metabolismo , Canais de Sódio/biossíntese , Canais de Sódio Disparados por Voltagem/biossíntese , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Dendritos/metabolismo , Proteínas de Drosophila/genética , Fenômenos Eletrofisiológicos , Eletrorretinografia , Expressão Gênica/genética , Larva , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Técnicas de Patch-Clamp , Canais de Sódio/genética , Transcriptoma , Canais de Sódio Disparados por Voltagem/genética
4.
Genet Med ; 23(10): 1889-1900, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113007

RESUMO

PURPOSE: Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants. METHODS: We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality. RESULTS: Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants. CONCLUSION: GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues.


Assuntos
Proteínas Morfogenéticas Ósseas , Anormalidades Craniofaciais/genética , Fatores de Diferenciação de Crescimento , Animais , Proteínas Morfogenéticas Ósseas/genética , Fatores de Diferenciação de Crescimento/genética , Humanos , Mutação de Sentido Incorreto , Fenótipo , Coluna Vertebral , Peixe-Zebra/genética
5.
J Neurochem ; 138 Suppl 1: 32-53, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27009575

RESUMO

Frontotemporal lobar degeneration (FTLD) comprises a highly heterogeneous group of disorders clinically associated with behavioral and personality changes, language impairment, and deficits in executive functioning, and pathologically associated with degeneration of frontal and temporal lobes. Some patients present with motor symptoms including amyotrophic lateral sclerosis. Genetic research over the past two decades in FTLD families led to the identification of three common FTLD genes (microtubule-associated protein tau, progranulin, and chromosome 9 open reading frame 72) and a small number of rare FTLD genes, explaining the disease in almost all autosomal dominant FTLD families but only a minority of apparently sporadic patients or patients in whom the family history is less clear. Identification of additional FTLD (risk) genes is therefore highly anticipated, especially with the emerging use of next-generation sequencing. Common variants in the transmembrane protein 106 B were identified as a genetic risk factor of FTLD and disease modifier in patients with known mutations. This review summarizes for each FTLD gene what we know about the type and frequency of mutations, their associated clinical and pathological features, and potential disease mechanisms. We also provide an overview of emerging disease pathways encompassing multiple FTLD genes. We further discuss how FTLD specific issues, such as disease heterogeneity, the presence of an unclear family history and the possible role of an oligogenic basis of FTLD, can pose challenges for future FTLD gene identification and risk assessment of specific variants. Finally, we highlight emerging clinical, genetic, and translational research opportunities that lie ahead. Genetic research led to the identification of three common FTLD genes with rare variants (MAPT, GRN, and C9orf72) and a small number of rare genes. Efforts are now ongoing, which aimed at the identification of rare variants with high risk and/or low frequency variants with intermediate effect. Common risk variants have also been identified, such as TMEM106B. This review discusses the current knowledge on FTLD genes and the emerging disease pathways encompassing multiple FTLD genes.


Assuntos
Degeneração Lobar Frontotemporal/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Degeneração Lobar Frontotemporal/psicologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Progranulinas , Proteínas/genética , Fatores de Risco , Proteínas tau/genética
6.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766047

RESUMO

All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

7.
Pest Manag Sci ; 79(10): 3913-3925, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37248207

RESUMO

BACKGROUND: The insecticides spinosad and imidacloprid are neurotoxins with distinct modes of action. Both target nicotinic acetylcholine receptors (nAChRs), albeit different subunits. Spinosad is an allosteric modulator, that upon binding initiates endocytosis of its target, nAChRα6. Imidacloprid binding triggers excessive neuronal ion influx. Despite these differences, low-dose effects converge downstream in the precipitation of oxidative stress and neurodegeneration. RESULTS: Using RNA-sequencing, we compared the transcriptional signatures of spinosad and imidacloprid, at low-dose exposures. Both insecticides cause up-regulation of glutathione S-transferase and cytochrome P450 genes in the brain and down-regulation in the fat body, whereas reduced expression of immune-related genes is observed in both tissues. Spinosad shows unique impacts on genes involved in lysosomal function, protein folding, and reproduction. Co-expression analyses revealed little to no correlation between genes affected by spinosad and nAChRα6 expressing neurons, but a positive correlation with glial cell markers. We also detected and experimentally confirmed nAChRα6 expression in fat body cells and male germline cells. This led us to uncover lysosomal dysfunction in the fat body following spinosad exposure, and a fitness cost in spinosad-resistant (nAChRα6 null) males - oxidative stress in testes, and reduced fertility. CONCLUSION: Spinosad and imidacloprid share transcriptional perturbations in immunity-, energy homeostasis-, and oxidative stress-related genes. Low doses of other neurotoxic insecticides should be investigated for similar impacts. While target-site spinosad resistance mutation has evolved in the field, this may have a fitness cost. Our findings demonstrate the power of tissue-specific transcriptomics approach and the use of single-cell transcriptome data. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Drosophila , Inseticidas , Macrolídeos , Animais , Masculino , Drosophila/efeitos dos fármacos , Drosophila/genética , Combinação de Medicamentos , Perfilação da Expressão Gênica , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Macrolídeos/farmacologia
8.
eNeuro ; 10(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37328295

RESUMO

The fruit fly Drosophila melanogaster has provided important insights into how sensory information is transduced by transient receptor potential (TRP) channels in the peripheral nervous system (PNS). However, TRP channels alone have not been able to completely model mechanosensitive transduction in mechanoreceptive chordotonal neurons (CNs). Here, we show that, in addition to TRP channels, the sole voltage-gated sodium channel (NaV) in Drosophila, Para, is localized to the dendrites of CNs. Para is localized to the distal tip of the dendrites in all CNs, from embryos to adults, and is colocalized with the mechanosensitive TRP channels No mechanoreceptor potential C (NompC) and Inactive/Nanchung (Iav/Nan). Para localization also demarcates spike initiation zones (SIZs) in axons and the dendritic localization of Para is indicative of a likely dendritic SIZ in fly CNs. Para is not present in the dendrites of other peripheral sensory neurons. In both multipolar and bipolar neurons in the PNS, Para is present in a proximal region of the axon, comparable to the axonal initial segment (AIS) in vertebrates, 40-60 µm from the soma in multipolar neurons and 20-40 µm in bipolar neurons. Whole-cell reduction of para expression using RNAi in CNs of the adult Johnston's organ (JO) severely affects sound-evoked potentials (SEPs). However, the duality of Para localization in the CN dendrites and axons identifies a need to develop resources to study compartment-specific roles of proteins that will enable us to better understand Para's role in mechanosensitive transduction.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Sódio Disparados por Voltagem , Animais , Potenciais de Ação , Axônios/metabolismo , Dendritos/metabolismo , Drosophila , Drosophila melanogaster/fisiologia , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
9.
Sci Adv ; 8(3): eabl5613, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044823

RESUMO

De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcription in flies. In contrast, neuronal depletion of Pits leads to increased wingless (wg) levels in the brain and is associated with axonal loss, whereas inhibition of Wg signaling is neuroprotective. Moreover, increased neuronal expression of wg in flies is sufficient to cause age-dependent axonal loss, similar to reduction of Pits. Loss of irf2bpl in zebrafish also causes neurological defects with an associated increase in wnt1 transcription and downstream signaling. WNT1 is also increased in patient-derived astrocytes, and pharmacological inhibition of Wnt suppresses the neurological phenotypes. Last, IRF2BPL and the Wnt antagonist, CKIα, physically and genetically interact, showing that IRF2BPL and CkIα antagonize Wnt transcription and signaling.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Transporte/metabolismo , Criança , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Fator Regulador 2 de Interferon/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Via de Sinalização Wnt , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Neuron ; 106(4): 589-606.e6, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32169171

RESUMO

ACOX1 (acyl-CoA oxidase 1) encodes the first and rate-limiting enzyme of the very-long-chain fatty acid (VLCFA) ß-oxidation pathway in peroxisomes and leads to H2O2 production. Unexpectedly, Drosophila (d) ACOX1 is mostly expressed and required in glia, and loss of ACOX1 leads to developmental delay, pupal death, reduced lifespan, impaired synaptic transmission, and glial and axonal loss. Patients who carry a previously unidentified, de novo, dominant variant in ACOX1 (p.N237S) also exhibit glial loss. However, this mutation causes increased levels of ACOX1 protein and function resulting in elevated levels of reactive oxygen species in glia in flies and murine Schwann cells. ACOX1 (p.N237S) patients exhibit a severe loss of Schwann cells and neurons. However, treatment of flies and primary Schwann cells with an antioxidant suppressed the p.N237S-induced neurodegeneration. In summary, both loss and gain of ACOX1 lead to glial and neuronal loss, but different mechanisms are at play and require different treatments.


Assuntos
Acil-CoA Oxidase/genética , Axônios/enzimologia , Degeneração Neural/genética , Neuroglia/enzimologia , Animais , Axônios/patologia , Drosophila , Humanos , Camundongos , Mutação , Degeneração Neural/enzimologia , Neuroglia/patologia , Ratos
11.
Cell Rep ; 20(11): 2565-2574, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28903038

RESUMO

Defective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons. Using an unbiased lipidomic approach, we found that brain lipid composition in humans and mice with PGRN deficiency shows disease-specific differences that distinguish them from normal and other pathologic groups. PGRN loss leads to an accumulation of polyunsaturated triacylglycerides, as well as a reduction of diacylglycerides and phosphatidylserines in fibroblast and enriched lysosome lipidomes. Transcriptomic analysis of PGRN-deficient mouse brains revealed distinct expression patterns of lysosomal, immune-related, and lipid metabolic genes. These findings have implications for the pathogenesis of FTLD-TDP due to PGRN deficiency and suggest lysosomal dysfunction as an underlying mechanism.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Metabolismo dos Lipídeos , Metaboloma , Transcriptoma/genética , Animais , Análise Discriminante , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Granulinas , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipídeos/isolamento & purificação , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Camundongos Mutantes , Neurônios/metabolismo , Neurônios/ultraestrutura , Progranulinas
12.
Am J Neurodegener Dis ; 5(1): 94-101, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073747

RESUMO

Mutations in the gene encoding the presenilin-1 protein (PSEN1) were first discovered to cause Alzheimer's disease (AD) 20 years ago. Since then more than 200 different pathogenic mutations have been reported, including a p.Gly206Ala founder mutation in the Hispanic population. Here we report mutation analysis of known AD genes in a cohort of 27 early-onset (age of onset ≤65, age of death ≤70) Hispanic patients ascertained in Florida. The PSEN1 p.Gly206Ala mutation was identified in 13 out of 27 patients (48.1%), emphasizing the importance of this specific mutation in the etiology of early-onset AD in this population. One other patient carried the known PSEN1 p.Gly378Val mutation. Genotyping of the PSEN1 p.Gly206Ala and p.Gly378Val mutations in 63 late-onset Hispanic AD patients did not identify additional mutation carriers. All p.Gly206Ala mutation carriers shared rare alleles at two microsatellite markers flanking PSEN1 supporting a common founder. This study confirms the p.Gly206Ala variant as a frequent cause of early onset AD in the Hispanic population and for the first time reports the high frequency of this mutation in Hispanics in Florida.

13.
Neurobiol Aging ; 48: 222.e9-222.e15, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658901

RESUMO

We aimed to identify new candidate genes potentially involved in early-onset Alzheimer's disease (EOAD). Exome sequencing was conducted on 45 EOAD patients with either a family history of Alzheimer's disease (AD, <65 years) or an extremely early age at the onset (≤55 years) followed by multiple variant filtering according to different modes of inheritance. We identified 29 candidate genes potentially involved in EOAD, of which the gene TYROBP, previously implicated in AD, was selected for genetic and functional follow-up. Using 3 patient cohorts, we observed rare coding TYROBP variants in 9 out of 1110 EOAD patients, whereas no such variants were detected in 1826 controls (p = 0.0001), suggesting that at least some rare TYROBP variants might contribute to EOAD risk. Overexpression of the p.D50_L51ins14 TYROBP mutant led to a profound reduction of TREM2 expression, a well-established risk factor for AD. This is the first study supporting a role for genetic variation in TYROBP in EOAD, with in vitro support for a functional effect of the p.D50_L51ins14 TYROBP mutation on TREM2 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Estudos de Associação Genética , Variação Genética/genética , Proteínas de Membrana/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Regulação para Baixo/genética , Exoma/genética , Feminino , Expressão Gênica/genética , Células HeLa , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutação/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Análise de Sequência
14.
Neurobiol Aging ; 34(9): 2235.e11-3, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23635657

RESUMO

The nuclear protein fused in sarcoma (FUS) is found in cytoplasmic inclusions in a subset of patients with the neurodegenerative disorder frontotemporal lobar degeneration (FTLD-FUS). FUS contains a methylated arginine-glycine-glycine domain that is required for transport into the nucleus. Recent findings have shown that this domain is hypomethylated in patients with FTLD-FUS. To determine whether the cause of hypomethylation is the result of mutations in protein N-arginine methyltransferases (PRMTs), we selected 3 candidate genes (PRMT1, PRMT3, and PRMT8) and performed complete sequencing analysis and real-time polymerase chain reaction mRNA expression analysis in 20 FTLD-FUS cases. No mutations or statistically significant changes in expression were observed in our patient samples, suggesting that defects in PRMTs are not the cause of FTLD-FUS.


Assuntos
DNA/genética , Degeneração Lobar Frontotemporal/genética , Proteínas de Membrana/genética , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Humanos , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA