Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(9): 091401, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721848

RESUMO

Dark matter (DM) from the galactic halo can accumulate in neutron stars and transmute them into sub-2.5M_{⊙} black holes if the dark matter particles are heavy, stable, and have interactions with nucleons. We show that nondetection of gravitational waves from mergers of such low-mass black holes can constrain the interactions of nonannihilating dark matter particles with nucleons. We find benchmark constraints with LIGO O3 data, viz., σ_{χn}≥O(10^{-47}) cm^{2} for bosonic DM with m_{χ}∼PeV (or m_{χ}∼GeV, if they can Bose-condense) and ≥O(10^{-46}) cm^{2} for fermionic DM with m_{χ}∼10^{3} PeV. These bounds depend on the priors on DM parameters and on the currently uncertain binary neutron star merger rate density. However, with increased exposure by the end of this decade, LIGO will probe cross sections that are many orders of magnitude below the neutrino floor and completely test the dark matter solution to missing pulsars in the Galactic center, demonstrating a windfall science case for gravitational wave detectors as probes of particle dark matter.

2.
Phys Rev Lett ; 131(1): 011005, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478451

RESUMO

New particles in theories beyond the standard model can manifest as stable relics that interact strongly with visible matter and make up a small fraction of the total dark matter abundance. Such particles represent an interesting physics target since they can evade existing bounds from direct detection due to their rapid thermalization in high-density environments. In this work we point out that their annihilation to visible matter inside large-volume neutrino telescopes can provide a new way to constrain or discover such particles. The signal is the most pronounced for relic masses in the GeV range, and can be efficiently constrained by existing Super-Kamiokande searches for dinucleon annihilation. We also provide an explicit realization of this scenario in the form of secluded dark matter coupled to a dark photon, and we show that the present method implies novel and stringent bounds on the model that are complementary to direct constraints from beam dumps, colliders, and direct detection experiments.

3.
Phys Rev Lett ; 126(14): 141105, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891461

RESUMO

Unusual masses of black holes being discovered by gravitational wave experiments pose fundamental questions about the origin of these black holes. Black holes with masses smaller than the Chandrasekhar limit ≈1.4 M_{⊙} are essentially impossible to produce through stellar evolution. We propose a new channel for production of low mass black holes: stellar objects catastrophically accrete nonannihilating dark matter, and the small dark core subsequently collapses, eating up the host star and transmuting it into a black hole. The wide range of allowed dark matter masses allows a smaller effective Chandrasekhar limit and thus smaller mass black holes. We point out several avenues to test our proposal, focusing on the redshift dependence of the merger rate. We show that redshift dependence of the merger rate can be used as a probe of the transmuted origin of low mass black holes.

4.
Phys Rev Lett ; 125(10): 101101, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955326

RESUMO

Primordial black holes can have substantial spin-a fundamental property that has a strong effect on its evaporation rate. We conduct a comprehensive study of the detectability of primordial black holes with non-negligible spin, via the searches for the neutrinos and positrons in the MeV energy range. Diffuse supernova neutrino background searches and observation of the 511 keV gamma-ray line from positrons in the Galactic center set competitive constraints. Spinning primordial black holes are probed up to a slightly higher mass range compared to nonspinning ones. Our constraint using neutrinos is slightly weaker than that due to the diffuse gamma-ray background, but complementary and robust. Our positron constraints are typically weaker in the lower mass range and stronger in the higher mass range for the spinning primordial black holes compared to the nonspinning ones. They are generally stronger than those derived from the diffuse gamma-ray measurements for primordial black holes having masses greater than a few ×10^{16} g.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA