Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Genet ; 14: 1148301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359370

RESUMO

The increasing incidence of bovine congestive heart failure (BCHF) in feedlot cattle poses a significant challenge to the beef industry from economic loss, reduced performance, and reduced animal welfare attributed to cardiac insufficiency. Changes to cardiac morphology as well as abnormal pulmonary arterial pressure (PAP) in cattle of mostly Angus ancestry have been recently characterized. However, congestive heart failure affecting cattle late in the feeding period has been an increasing problem and tools are needed for the industry to address the rate of mortality in the feedlot for multiple breeds. At harvest, a population of 32,763 commercial fed cattle were phenotyped for cardiac morphology with associated production data collected from feedlot processing to harvest at a single feedlot and packing plant in the Pacific Northwest. A sub-population of 5,001 individuals were selected for low-pass genotyping to estimate variance components and genetic correlations between heart score and the production traits observed during the feeding period. At harvest, the incidence of a heart score of 4 or 5 in this population was approximately 4.14%, indicating a significant proportion of feeder cattle are at risk of cardiac mortality before harvest. Heart scores were also significantly and positively correlated with the percentage Angus ancestry observed by genomic breed percentage analysis. The heritability of heart score measured as a binary (scores 1 and 2 = 0, scores 4 and 5 = 1) trait was 0.356 in this population, which indicates development of a selection tool to reduce the risk of congestive heart failure as an EPD (expected progeny difference) is feasible. Genetic correlations of heart score with growth traits and feed intake were moderate and positive (0.289-0.460). Genetic correlations between heart score and backfat and marbling score were -0.120 and -0.108, respectively. Significant genetic correlation to traits of high economic importance in existing selection indexes explain the increased rate of congestive heart failure observed over time. These results indicate potential to implement heart score observed at harvest as a phenotype under selection in genetic evaluation in order to reduce feedlot mortality due to cardiac insufficiency and improve overall cardiopulmonary health in feeder cattle.

2.
J Anim Sci ; 96(10): 4076-4086, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30053023

RESUMO

The objective of this study was to estimate economic returns and costs associated with 4 scenarios of genetic evaluation that combine genotypes, phenotypes, and pedigree information from a vertically integrated purebred (PB) and commercial (CM) beef cattle system. Inference was to a genetic evaluation for a production system producing Charolais terminal sires for 10,000 CM cows. The first genetic evaluation scenario, denoted PB_A, modeled a genetic evaluation in which pedigree information and phenotypes are available for PB seedstock animals. Scenario PB_H contained the same information as PB_A with the addition of 25K density (GeneSeek Genomic Profiler LD) single nucleotide polymorphism (SNP) genotypes from PB animals. Scenario PBCM_A contained pedigree records and phenotypes from PB and CM cattle. Scenario PBCM_H contained phenotypes, pedigree, and genotypes from the PB and CM animals. Estimates of prediction error variance, (co)variance, and selection index parameters were used to estimate accuracy of selection candidates (rTI) and genetic gain resulting from selection on an economic index in US dollars (ΔG). Annual costs and incomes were used to determine the 30-yr cumulative net present value (CNPV) per CM calf resulting from selection in these genetic evaluation scenarios. Adding genotypes and CM production phenotypes to genetic evaluation increased the rTI of selection candidates and ΔG across all 4 scenarios. Scenario PBCM_H produced the highest annual ΔG in the PB herd at US$11.91 per head. Including CM phenotypes and parentage testing in the genetic evaluation increased the time to breakeven from 12 yr in PB_A to 19 years in PBCM_A after accounting for the cost of that information. Adding CM phenotypes and genotypes increased the breakeven time from 12 yr in PB_H to 18 yr in PBCM_H. Scenario PB_H produced the highest 30-yr CNPV per slaughtered CM calf at US$371.16. These results using field data indicate that economically relevant rTI and ΔG can be realized by adding 25K SNP genotypes and CM phenotypes to genetic evaluation, but the additional cost of that data significantly delays the economic return to the enterprise.


Assuntos
Bovinos/genética , Polimorfismo de Nucleotídeo Único/genética , Carne Vermelha/economia , Animais , Cruzamento , Bovinos/crescimento & desenvolvimento , Feminino , Genótipo , Masculino , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA