Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Immunol ; 18(3): 321-333, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135254

RESUMO

The FcµR receptor for the crystallizable fragment (Fc) of immunoglobulin M (IgM) can function as a cell-surface receptor for secreted IgM on a variety of cell types. We found here that FcµR was also expressed in the trans-Golgi network of developing B cells, where it constrained transport of the IgM-isotype BCR (IgM-BCR) but not of the IgD-isotype BCR (IgD-BCR). In the absence of FcµR, the surface expression of IgM-BCR was increased, which resulted in enhanced tonic BCR signaling. B-cell-specific deficiency in FcµR enhanced the spontaneous differentiation of B-1 cells, which resulted in increased serum concentrations of natural IgM and dysregulated homeostasis of B-2 cells; this caused the spontaneous formation of germinal centers, increased titers of serum autoantibodies and excessive accumulation of B cells. Thus, FcµR serves as a critical regulator of B cell biology by constraining the transport and cell-surface expression of IgM-BCR.


Assuntos
Linfócitos B/fisiologia , Imunoglobulina M/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores Fc/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Imunoglobulina M/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Células Th1/imunologia , Células Th2/imunologia
2.
Physiol Rev ; 98(4): 2287-2316, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30109819

RESUMO

The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.


Assuntos
Sistema Imunitário/fisiologia , Sistema Nervoso/fisiopatologia , Animais , Humanos , Inflamação/fisiopatologia , Transdução de Sinais/fisiologia
3.
PLoS Pathog ; 19(12): e1011576, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109366

RESUMO

Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of TRPV1 in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.


Assuntos
Infecções por Enterobacteriaceae , Mucosa Intestinal , Camundongos , Animais , Mucosa Intestinal/metabolismo , Colo/patologia , Citrobacter rodentium , Células Endoteliais/metabolismo , Imunidade Inata , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L53-L63, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410021

RESUMO

It is becoming increasingly appreciated that the nervous and immune systems communicate bidirectionally to regulate immunological outcomes in a variety of organs including the lung. Activation of neuronal signaling can be induced by inflammation, tissue damage, or pathogens to evoke or reduce immune cell activation in what has been termed a neuroimmune reflex. In the periphery, these reflexes include the cholinergic anti-inflammatory pathway, sympathetic reflex, and sensory nociceptor-immune cell pathways. Continual advances in neuroimmunology in peripheral organ systems have fueled small-scale clinical trials that have yielded encouraging results for a range of immunopathologies such as rheumatoid arthritis. Despite these successes, several limitations should give clinical investigators pause in the application of neural stimulation as a therapeutic for lung inflammation, especially if inflammation arises from a novel pathogen. In this review, the general mechanisms of each reflex, the evidence for these circuits in the control of lung inflammation, and the key knowledge gaps in our understanding of these neuroimmune circuits will be discussed. These limitations can be overcome not only through a better understanding of neuroanatomy but also through a systematic evaluation of stimulation parameters using immune activation in lung tissues as primary readouts. Our rapidly evolving understanding of the nervous and immune systems highlights the importance of communication between these cells in health and disease. This integrative approach has tremendous potential in the development of targeted therapeutics if specific challenges can be overcome.


Assuntos
Artrite Reumatoide , Pneumonia , Humanos , Inflamação/metabolismo
5.
J Physiol ; 599(7): 2075-2084, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33491187

RESUMO

KEY POINTS: It has previously been shown that afferent and efferent vagal nerve stimulation potently inhibits lipopolysaccharide (LPS)-induced inflammation Our data show inhibition of inflammation by efferent but not afferent vagal nerve stimulation requires T-cell derived acetylcholine We show that afferent and efferent neuroimmune circuits require ß2 -adrenergic receptor signalling ABSTRACT: Chronic inflammation due to inappropriate immune cell activation can have significant effects on a variety of organ systems, reducing lifespan and quality of life. As such, highly targeted control of immune cell activation is a major therapeutic goal. Vagus nerve stimulation (VNS) has emerged as a therapeutic modality that exploits neuroimmune communication to reduce immune cell activation and consequently inflammation. Although vagal efferent fibres were originally identified as the primary driver of anti-inflammatory actions, the vagus nerve in most species of animals predominantly comprises afferent fibres. Stimulation of vagal afferent fibres can also reduce inflammation; it is, however, uncertain how these two neuroimmune circuits diverge. Here we show that afferent VNS induces a mechanism distinct from efferent VNS, ameliorating lipopolysaccharide (LPS)-induced inflammation independently of T-cell derived acetylcholine (ACh) which is required by efferent VNS. Using a ß2 -adrenergic receptor antagonist (ß2 -AR), we find that immune regulation induced by intact, afferent, or efferent VNS occurs in a ß2- AR-dependent manner. Together, our findings indicate that intact VNS activates at least two distinct neuroimmune circuits each with unique mechanisms of action. Selective targeting of either the vagal efferent or afferent fibres may provide more personalized, robust and effective control over inappropriate immune responses.


Assuntos
Estimulação do Nervo Vago , Animais , Inflamação , Lipopolissacarídeos , Qualidade de Vida , Nervo Vago
6.
Infect Immun ; 89(9): e0005921, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820817

RESUMO

Diarrheal diseases are a leading cause of death in children under the age of 5 years worldwide. Repeated early-life exposures to diarrheal pathogens can result in comorbidities including stunted growth and cognitive deficits, suggesting an impairment in the microbiota-gut-brain (MGB) axis. Neonatal C57BL/6 mice were infected with enteropathogenic Escherichia coli (EPEC) (strain e2348/69; ΔescV [type III secretion system {T3SS} mutant]) or the vehicle (Luria-Bertani [LB] broth) via orogastric gavage at postnatal day 7 (P7). Behavior (novel-object recognition [NOR] task, light/dark [L/D] box, and open-field test [OFT]), intestinal physiology (Ussing chambers), and the gut microbiota (16S Illumina sequencing) were assessed in adulthood (6 to 8 weeks of age). Neonatal infection of mice with EPEC, but not the T3SS mutant, caused ileal inflammation in neonates and impaired recognition memory (NOR task) in adulthood. Cognitive impairments were coupled with increased neurogenesis (Ki67 and doublecortin immunostaining) and neuroinflammation (increased microglia activation [Iba1]) in adulthood. Intestinal pathophysiology in adult mice was characterized by increased secretory state (short-circuit current [Isc]) and permeability (conductance) (fluorescein isothiocyanate [FITC]-dextran flux) in the ileum and colon of neonatally EPEC-infected mice, along with increased expression of proinflammatory cytokines (Tnfα, Il12, and Il6) and pattern recognition receptors (Nod1/2 and Tlr2/4). Finally, neonatal EPEC infection caused significant dysbiosis of the gut microbiota, including decreased Firmicutes, in adulthood. Together, these findings demonstrate that infection in early life can significantly impair the MGB axis in adulthood.


Assuntos
Encéfalo/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Retroalimentação Fisiológica , Microbioma Gastrointestinal , Intestinos , Animais , Suscetibilidade a Doenças , Humanos
7.
PLoS Pathog ; 15(4): e1007719, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30973939

RESUMO

The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1ß, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses.


Assuntos
Acetilcolina/metabolismo , Citrobacter rodentium/imunologia , Colo/imunologia , Infecções por Enterobacteriaceae/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Colo/metabolismo , Citocinas/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR5/fisiologia
8.
J Infect Dis ; 221(12): 1978-1988, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31960920

RESUMO

BACKGROUND: Neurons are an integral component of the immune system that functions to coordinate responses to bacterial pathogens. Sensory nociceptive neurons that can detect bacterial pathogens are found throughout the body with dense innervation of the intestinal tract. METHODS: In this study, we assessed the role of these nerves in the coordination of host defenses to Citrobacter rodentium. Selective ablation of nociceptive neurons significantly increased bacterial burden 10 days postinfection and delayed pathogen clearance. RESULTS: Because the sensory neuropeptide CGRP (calcitonin gene-related peptide) regulates host responses during infection of the skin, lung, and small intestine, we assessed the role of CGRP receptor signaling during C rodentium infection. Although CGRP receptor blockade reduced certain proinflammatory gene expression, bacterial burden and Il-22 expression was unaffected. CONCLUSIONS: Our data highlight that sensory nociceptive neurons exert a significant host protective role during C rodentium infection, independent of CGRP receptor signaling.


Assuntos
Citrobacter rodentium/imunologia , Sistema Nervoso Entérico/imunologia , Infecções por Enterobacteriaceae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Nociceptores/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Modelos Animais de Doenças , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Mucosa Intestinal/inervação , Mucosa Intestinal/microbiologia , Intestino Delgado/inervação , Intestino Delgado/microbiologia , Camundongos , Camundongos Knockout , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Canais de Cátion TRPV/genética
9.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32341116

RESUMO

The orchestration of host immune responses to enteric bacterial pathogens is a complex process involving the integration of numerous signals, including from the nervous system. Despite the recent progress in understanding the contribution of neuroimmune interactions in the regulation of inflammation, the mechanisms and effects of this communication during enteric bacterial infection are only beginning to be characterized. As part of this neuroimmune communication, neurons specialized to detect painful or otherwise noxious stimuli can respond to bacterial pathogens. Highlighting the complexity of these systems, the immunological consequences of sensory neuron activation can be either host adaptive or maladaptive, depending on the pathogen and organ system. These are but one of many types of neuroimmune circuits, with the vagus nerve and sympathetic innervation of numerous organs now known to modulate immune cell function and therefore dictate immunological outcomes during health and disease. Here, we review the evidence for neuroimmune communication in response to bacterial pathogens, and then discuss the consequences to host morbidity and mortality during infection of the gastrointestinal tract.


Assuntos
Sistema Nervoso Entérico/imunologia , Infecções por Enterobacteriaceae/imunologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Neuroimunomodulação/genética , Células Receptoras Sensoriais/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Citrobacter/crescimento & desenvolvimento , Citrobacter/imunologia , Sistema Nervoso Entérico/microbiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Trato Gastrointestinal/inervação , Trato Gastrointestinal/microbiologia , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Células Receptoras Sensoriais/microbiologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/imunologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
10.
Immunity ; 35(2): 223-35, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21820333

RESUMO

Thymic stromal lymphopoetin (TSLP) influences numerous immune functions, including those in the colonic mucosa. Here we report that TSLP-deficient (Tslp(-/-)) mice did not exhibit increased inflammation during dextran sodium sulfate (DSS)-induced colitis but failed to recover from disease, resulting in death. Increased localized neutrophil elastase (NE) activity during overt inflammation was observed in Tslp(-/-) mice and was paralleled by reduced expression of an endogenous inhibitor, secretory leukocyte peptidase inhibitor (SLPI). Pharmacological inhibition of NE or treatment with rSLPI reduced DSS-induced mortality in Tslp(-/-) mice. Signaling through TSLPR on nonhematopoietic cells was sufficient for recovery from DSS-induced colitis. Expression of the receptor occurred on intestinal epithelial cells (IEC), with stimulation inducing SLPI expression. Therefore, TSLP is critical in mediating mucosal healing after insult and functions in a nonredundant capacity that is independent of restraining T helper 1 (Th1) and Th17 cell cytokine production.


Assuntos
Colite/imunologia , Imunoglobulinas/metabolismo , Mucosa Intestinal/metabolismo , Elastase de Leucócito/metabolismo , Receptores de Citocinas/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Regulação para Baixo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Imunidade nas Mucosas , Inflamação , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Elastase de Leucócito/genética , Elastase de Leucócito/imunologia , Camundongos , Camundongos Knockout , Proteínas Recombinantes/genética , Inibidor Secretado de Peptidases Leucocitárias/administração & dosagem , Inibidor Secretado de Peptidases Leucocitárias/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
J Physiol ; 597(24): 5777-5797, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31652348

RESUMO

KEY POINTS: •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour. ABSTRACT: Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre+ Nod1f/f ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.


Assuntos
Encéfalo/metabolismo , Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Serotonina/metabolismo , Transmissão Sináptica , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Encéfalo/fisiologia , Células Cultivadas , Cognição , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Absorção Intestinal , Mucosa Intestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo
13.
Brain Behav Immun ; 82: 214-223, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445965

RESUMO

The peripheral nervous system is an active participant in immune responses capable of blocking aberrant activation of a variety of immune cells. As one of these neuro-immune circuits, the cholinergic anti-inflammatory pathway has been well established to reduce the severity of several immunopathologies. While the activation of this pathway by vagal nerve stimulation requires sympathetic innervation of the spleen, the neuro-immune circuitry remains highly controversial. Neuro-immune pathways in other lymphoid tissues such as mesenteric lymph nodes (MLN) that are critical to the surveillance of the small intestine and proximal colon have not been assessed. Using conditionally expressed Channelrhodopsin, selective stimulation of sympathetic post-ganglionic neurons in the superior mesenteric ganglion (SMG) prevented macrophage activation and LPS-induced TNFα production in the spleen and MLN, but not in the inguinal LN. Site selective stimulation of the SMG induced the release of norepinephrine, resulting in ß2AR dependent acetylcholine release in the MLN and spleen. VNS-evoked release of norepinephrine and acetylcholine in the MLN and spleen was significantly reduced using selective optogenetic blockade applied at the SMG. Additionally, this optogenetic blockade restored LPS-induced TNFα production, despite VNS. These studies identify the superior mesenteric ganglion as a critical node in a neuro-immune circuit that can inhibit immune function in the MLN and the spleen.


Assuntos
Linfonodos/metabolismo , Neuroimunomodulação/fisiologia , Baço/metabolismo , Abdome , Acetilcolina/metabolismo , Animais , Feminino , Linfonodos/imunologia , Linfonodos/inervação , Masculino , Artéria Mesentérica Superior/inervação , Artéria Mesentérica Superior/metabolismo , Camundongos , Camundongos Endogâmicos , Norepinefrina/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Baço/imunologia , Baço/inervação , Estimulação do Nervo Vago
15.
J Physiol ; 600(20): 4383-4384, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073291
16.
Proc Natl Acad Sci U S A ; 111(3): 1060-5, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398517

RESUMO

The ability to mount a strong immune response against pathogens is crucial for mammalian survival. However, excessive and uncontrolled immune reactions can lead to autoimmunity. Unraveling how the reactive versus tolerogenic state is controlled might point toward novel therapeutic strategies to treat autoimmune diseases. The surface receptor Toso/Faim3 has been linked to apoptosis, IgM binding, and innate immune responses. In this study, we used Toso-deficient mice to investigate the importance of Toso in tolerance and autoimmunity. We found that Toso(-/-) mice do not develop severe experimental autoimmune encephalomyelitis (EAE), a mouse model for the human disease multiple sclerosis. Toso(-/-) dendritic cells were less sensitive to Toll-like receptor stimulation and induced significantly lower levels of disease-associated inflammatory T-cell responses. Consistent with this observation, the transfer of Toso(-/-) dendritic cells did not induce autoimmune diabetes, indicating their tolerogenic potential. In Toso(-/-) mice subjected to EAE induction, we found increased numbers of regulatory T cells and decreased encephalitogenic cellular infiltrates in the brain. Finally, inhibition of Toso activity in vivo at either an early or late stage of EAE induction prevented further disease progression. Taken together, our data identify Toso as a unique regulator of inflammatory autoimmune responses and an attractive target for therapeutic intervention.


Assuntos
Proteínas de Transporte/metabolismo , Células Dendríticas/citologia , Encefalomielite Autoimune Experimental/imunologia , Proteínas de Membrana/metabolismo , Linfócitos T Reguladores/citologia , Animais , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/terapia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imuno-Histoquímica , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th17/citologia , Fatores de Tempo
17.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G989-98, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056723

RESUMO

UNLABELLED: Anxiety, depression, and altered memory are associated with intestinal diseases, including inflammatory bowel disease (IBD). Understanding the link between these behavioral changes and IBD is important clinically since concomitant mood disorders often increase a patient's risk of requiring surgery and developing secondary functional gastrointestinal diseases. Anxiety-like behavior (light/dark box test) and recognition memory (novel object recognition task) were determined at the peak and during resolution of inflammation in the dextran sodium sulfate (DSS) mouse model of acute colitis. DSS (5 days) was administered via drinking water followed by 3 or 9 days of normal drinking water to assess behavior during active or resolving inflammation, respectively. Disease (weight, colon length, and histology) was assessed and the composition of the gut microbiota was characterized by using qPCR on fecal pellet DNA. In a subset of mice, pretreatment with probiotics was started 1 wk prior to commencing DSS. During active inflammation (8 days), mice demonstrated impaired recognition memory and exhibited anxiety-like behavior vs. CONTROLS: These behavioral defects were normalized by 14 days post-DSS. Shifts in the composition of the gut microbiota were evident during active inflammation, notably as decreases in lactobacilli and segmented filamentous bacteria, which were also reversed once the disease had resolved. Administration of probiotics could prevent the behavioral defects seen in acute DSS. Taken together, our findings indicate that changes in mood and behavior are present during acute inflammation in murine IBD and associated with dysbiosis and that these outcomes can be prevented by the administration of probiotics.


Assuntos
Ansiedade/terapia , Colite Ulcerativa/terapia , Probióticos/uso terapêutico , Animais , Ansiedade/etiologia , Ansiedade/microbiologia , Encéfalo/fisiopatologia , Colite Ulcerativa/complicações , Colite Ulcerativa/microbiologia , Feminino , Intestinos/microbiologia , Intestinos/patologia , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL
18.
Eur J Immunol ; 45(2): 418-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25393615

RESUMO

STAT3 is a critical transcription factor activated downstream of cytokine signaling and is integral for the function of multiple immune cell types. Human mutations in STAT3 cause primary immunodeficiency resulting in impaired control of a variety of infections, including reactivation of latent viruses. In this study, we investigate how T-cell functions of STAT3 contribute to responses to viral infection by inducing chronic lymphocytic choriomeningitis virus (LCMV) infection in mice lacking STAT3 specifically in T cells. Although mice with conditional disruption of STAT3 in T cells were able to mount early responses to viral infection similar to control animals, including expansion of effector T cells, we found generation of T-follicular helper (Tfh) cells to be impaired. As a result, STAT3 T cell deficient mice produced attenuated germinal center reactions, and did not accumulate bone marrow virus specific IgG-secreting cells, resulting in failure to maintain levels of virus-specific IgG or mount neutralizing responses to LCMV in the serum. These effects were associated with reduced control of viral replication and prolonged infection. Our results demonstrate the importance of STAT3 in T cells for the generation of functional long-term humoral immunity to viral infections.


Assuntos
Anticorpos Antivirais/biossíntese , Imunidade Humoral , Imunoglobulina G/biossíntese , Coriomeningite Linfocítica/imunologia , Fator de Transcrição STAT3/imunologia , Linfócitos T Auxiliares-Indutores/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos B/virologia , Doença Crônica , Expressão Gênica , Imunofenotipagem , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Citotóxicos/virologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Replicação Viral
19.
Proc Natl Acad Sci U S A ; 110(4): 1410-5, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297238

RESUMO

Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4(+) T-cell population that is stimulated by norepinephrine to release ACh, ChAT(+) B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT(+) B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT(+) B cells controlling the local recruitment of neutrophils.


Assuntos
Acetilcolina/biossíntese , Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Tecido Linfoide/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Metagenoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neuroimunomodulação , Gravidez , Receptores de Neurotransmissores/imunologia , Receptores de Neurotransmissores/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
20.
Am J Physiol Gastrointest Liver Physiol ; 307(8): G793-802, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25190473

RESUMO

The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis.


Assuntos
Imunidade Adaptativa , Sistema Hipotálamo-Hipofisário/microbiologia , Intestinos/microbiologia , Microbiota , Probióticos/farmacologia , Animais , Ansiedade/imunologia , Ansiedade/microbiologia , Ansiedade/fisiopatologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/imunologia , Estresse Psicológico/microbiologia , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA