Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
PLoS Pathog ; 20(4): e1011980, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662774

RESUMO

Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.


Assuntos
Replicação Viral , Vespas , Animais , Vespas/virologia , Vespas/genética , Replicação Viral/genética , Genoma Viral , Feminino , Genes Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Polydnaviridae/genética , Vírion/genética
2.
Nucleic Acids Res ; 51(18): 9764-9784, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37615575

RESUMO

Transposable elements (TEs) produce structural variants and are considered an important source of genetic diversity. Notably, TE-gene fusion transcripts, i.e. chimeric transcripts, have been associated with adaptation in several species. However, the identification of these chimeras remains hindered due to the lack of detection tools at a transcriptome-wide scale, and to the reliance on a reference genome, even though different individuals/cells/strains have different TE insertions. Therefore, we developed ChimeraTE, a pipeline that uses paired-end RNA-seq reads to identify chimeric transcripts through two different modes. Mode 1 is the reference-guided approach that employs canonical genome alignment, and Mode 2 identifies chimeras derived from fixed or insertionally polymorphic TEs without any reference genome. We have validated both modes using RNA-seq data from four Drosophila melanogaster wild-type strains. We found ∼1.12% of all genes generating chimeric transcripts, most of them from TE-exonized sequences. Approximately ∼23% of all detected chimeras were absent from the reference genome, indicating that TEs belonging to chimeric transcripts may be recent, polymorphic insertions. ChimeraTE is the first pipeline able to automatically uncover chimeric transcripts without a reference genome, consisting of two running Modes that can be used as a tool to investigate the contribution of TEs to transcriptome plasticity.

3.
BMC Biol ; 19(1): 241, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34749730

RESUMO

BACKGROUND: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.


Assuntos
Besouros , Gorgulhos , Animais , Comunicação Celular , Elementos de DNA Transponíveis/genética , Grão Comestível , Humanos , Gorgulhos/genética
4.
Annu Rev Genet ; 46: 21-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905872

RESUMO

The fact that transposable elements (TEs) can influence host gene expression was first recognized more than 50 years ago. However, since that time, TEs have been widely regarded as harmful genetic parasites-selfish elements that are rarely co-opted by the genome to serve a beneficial role. Here, we survey recent findings that relate to TE impact on host genes and remind the reader that TEs, in contrast to other noncoding parts of the genome, are uniquely suited to gene regulatory functions. We review recent studies that demonstrate the role of TEs in establishing and rewiring gene regulatory networks and discuss the overall ubiquity of exaptation. We suggest that although individuals within a population can be harmed by the deleterious effects of new TE insertions, the presence of TE sequences in a genome is of overall benefit to the population.


Assuntos
Elementos de DNA Transponíveis , Redes Reguladoras de Genes , Genoma Humano , Sequências Reguladoras de Ácido Nucleico , Ativação Transcricional , Animais , Sítios de Ligação , Epigênese Genética , Evolução Molecular , Deriva Genética , Genética Populacional , Humanos , Mutação , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico
6.
Proc Natl Acad Sci U S A ; 111(34): E3534-43, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114248

RESUMO

Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Elementos de DNA Transponíveis/genética , Epigênese Genética , Proteína 7 de Ligação a Ácidos Graxos , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Humanos , Linfoma Difuso de Grandes Células B/etiologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Retroelementos/genética , Sequências Repetidas Terminais , Análise Serial de Tecidos , Ativação Transcricional
7.
PLoS Genet ; 7(9): e1002301, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980304

RESUMO

The "arms race" relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE-induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness.


Assuntos
Epigênese Genética/genética , Glicosiltransferases/genética , Heterocromatina/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Mutagênese Insercional/genética , Retroelementos/genética , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Inativação Gênica , Glicosiltransferases/metabolismo , Heterocromatina/genética , Camundongos , Polimorfismo Genético
8.
J Virol ; 86(7): 3675-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278247

RESUMO

Endogenous retroviruses have the ability to become permanently integrated into the genomes of their host, and they are generally transmitted vertically from parent to progeny. With the exception of gypsy, few endogenous retroviruses have been identified in insects. In this study, we describe the tirant endogenous retrovirus in a subset of Drosophila simulans natural populations. By focusing on the envelope gene, we show that the entire retroviral cycle (transcription, translation, and retrotransposition) can be completed for tirant within one population of this species.


Assuntos
Drosophila/virologia , Retrovirus Endógenos/isolamento & purificação , Retroviridae/isolamento & purificação , Animais , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Dados de Sequência Molecular , Filogenia , Retroviridae/classificação , Retroviridae/genética
9.
Heliyon ; 9(3): e13962, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895353

RESUMO

Cereal-feeding beetles are a major risk for cereal crop maintenance. Cereal weevils such as Sitophilus oryzae have symbiotic intracellular bacteria that provide essential aromatic amino acid to the host for the biosynthesis of their cuticle building blocks. Their cuticle is an important protective barrier against biotic and abiotic stresses, providing high resistance from insecticides. Quantitative optical methods specialized in insect cuticle analysis exist, but their scope of use and the repeatability of the results remain limited. Here, we investigated the potential of Hyperspectral Imaging (HSI) as a standardized cuticle analysis tool. Based on HSI, we acquired time series of average reflectance profiles from 400 to 1000 nm from symbiotic (with bacteria) and aposymbiotic (without bacteria) cereal weevils S. oryzae exposed to different nutritional stresses. We assessed the phenotypic changes of weevils under different diets throughout their development and demonstrated the agreement of the results between the HSI method and the classically used Red-Green-Blue analysis. Then, we compared the use of both technologies in laboratory conditions and highlighted the assets of HSI to develop a simple, automated, and standardized analysis tool. This is the first study showing the reliability and feasibility of HSI for a standardized analysis of insect cuticle changes.

10.
mBio ; 14(2): e0333322, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36779765

RESUMO

Nutritional symbioses between insects and intracellular bacteria (endosymbionts) are a major force of adaptation, allowing animals to colonize nutrient-poor ecological niches. Many beetles feeding on tyrosine-poor substrates rely on a surplus of aromatic amino acids produced by bacterial endosymbionts. This surplus of aromatic amino acids is crucial for the biosynthesis of a thick exoskeleton, the cuticle, which is made of a matrix of chitin with proteins and pigments built from tyrosine-derived molecules, providing an important defensive barrier against biotic and abiotic stress. Other endosymbiont-related advantages for beetles include faster development and improved fecundity. The association between Sitophilus oryzae and the Sodalis pierantonius endosymbiont represents a unique case study among beetles: endosymbionts undergo an exponential proliferation in young adults concomitant with the cuticle tanning, and then they are fully eliminated. While endosymbiont clearance, as well as total endosymbiont titer, are host-controlled processes, the mechanism triggering endosymbiont exponential proliferation remains poorly understood. Here, we show that endosymbiont exponential proliferation relies on host carbohydrate intake, unlike the total endosymbiont titer or the endosymbiont clearance, which are under host genetic control. Remarkably, insect fecundity was preserved, and the cuticle tanning was achieved, even when endosymbiont exponential proliferation was experimentally blocked, except in the context of a severely unbalanced diet. Moreover, a high endosymbiont titer coupled with nutrient shortage dramatically impacted host survival, revealing possible environment-dependent disadvantages for the host, likely due to the high energy cost of exponentially proliferating endosymbionts. IMPORTANCE Beetles thriving on tyrosine-poor diet sources often develop mutualistic associations with endosymbionts able to synthesize aromatic amino acids. This surplus of aromatic amino acids is used to reinforce the insect's protective cuticle. An exceptional feature of the Sitophilus oryzae/Sodalis pierantonius interaction is the exponential increase in endosymbiotic titer observed in young adult insects, in concomitance with cuticle biosynthesis. Here, we show that host carbohydrate intake triggers endosymbiont exponential proliferation, even in conditions that lead to the detriment of the host survival. In addition, when hosts thrive on a balanced diet, endosymbiont proliferation is dispensable for several host fitness traits. The endosymbiont exponential proliferation is therefore dependent on the nutritional status of the host, and its consequences on host cuticle biosynthesis and survival depend on food quality and availability.


Assuntos
Besouros , Gorgulhos , Animais , Gorgulhos/genética , Gorgulhos/microbiologia , Enterobacteriaceae/genética , Simbiose , Insetos , Aminoácidos Aromáticos/metabolismo , Tirosina/metabolismo , Carboidratos , Proliferação de Células
11.
Genome Biol Evol ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37652057

RESUMO

Transposable elements (TEs) are parasite DNA sequences that are able to move and multiply along the chromosomes of all genomes. They can be controlled by the host through the targeting of silencing epigenetic marks, which may affect the chromatin structure of neighboring sequences, including genes. In this study, we used transcriptomic and epigenomic high-throughput data produced from ovarian samples of several Drosophila melanogaster and Drosophila simulans wild-type strains, in order to finely quantify the influence of TE insertions on gene RNA levels and histone marks (H3K9me3 and H3K4me3). Our results reveal a stronger epigenetic effect of TEs on ortholog genes in D. simulans compared with D. melanogaster. At the same time, we uncover a larger contribution of TEs to gene H3K9me3 variance within genomes in D. melanogaster, which is evidenced by a stronger correlation of TE numbers around genes with the levels of this chromatin mark in D. melanogaster. Overall, this work contributes to the understanding of species-specific influence of TEs within genomes. It provides a new light on the considerable natural variability provided by TEs, which may be associated with contrasted adaptive and evolutionary potentials.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Elementos de DNA Transponíveis , Drosophila simulans/genética , Cromatina , Transcriptoma
12.
Front Physiol ; 14: 1142513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035680

RESUMO

Insects often establish long-term relationships with intracellular symbiotic bacteria, i.e., endosymbionts, that provide them with essential nutrients such as amino acids and vitamins. Endosymbionts are typically confined within specialized host cells called bacteriocytes that may form an organ, the bacteriome. Compartmentalization within host cells is paramount for protecting the endosymbionts and also avoiding chronic activation of the host immune system. In the cereal weevil Sitophilus oryzae, bacteriomes are present as a single organ at the larval foregut-midgut junction, and in adults, at the apex of midgut mesenteric caeca and at the apex of the four ovarioles. While the adult midgut endosymbionts experience a drastic proliferation during early adulthood followed by complete elimination through apoptosis and autophagy, ovarian endosymbionts are maintained throughout the weevil lifetime by unknown mechanisms. Bacteria present in ovarian bacteriomes are thought to be involved in the maternal transmission of endosymbionts through infection of the female germline, but the exact mode of transmission is not fully understood. Here, we show that endosymbionts are able to colonize the germarium in one-week-old females, pinpointing a potential infection route of oocytes. To identify potential immune regulators of ovarian endosymbionts, we have analyzed the transcriptomes of the ovarian bacteriomes through young adult development, from one-day-old adults to sexually mature ones. In contrast with midgut bacteriomes, immune effectors are downregulated in ovarian bacteriomes at the onset of sexual maturation. We hypothesize that relaxation of endosymbiont control by antimicrobial peptides might allow bacterial migration and potential oocyte infection, ensuring endosymbiont transmission.

13.
Microbiome ; 11(1): 274, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087390

RESUMO

BACKGROUND: Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development. RESULTS: We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response. CONCLUSIONS: The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.


Assuntos
Gorgulhos , Animais , Gorgulhos/microbiologia , Grão Comestível , Enterobacteriaceae/metabolismo , Bactérias/genética , Simbiose , Expressão Gênica
14.
J Biol Chem ; 286(41): 35543-35552, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21865161

RESUMO

The long terminal repeat (LTR) sequences of endogenous retroviruses and retroelements contain promoter elements and are known to form chimeric transcripts with nearby cellular genes. Here we show that an LTR of the THE1D retroelement family has been domesticated as an alternative promoter of human IL2RB, the gene encoding the ß subunit of the IL-2 receptor. The LTR promoter confers expression specifically in the placental trophoblast as opposed to its native transcription in the hematopoietic system. Rather than sequence-specific determinants, DNA methylation was found to regulate transcription initiation and splicing efficiency in a tissue-specific manner. Furthermore, we detected the cytoplasmic signaling domain of the IL-2Rß protein in the placenta, suggesting that IL-2Rß undergoes preferential proteolytic cleavage in this tissue. These findings implicate novel functions for this cytokine receptor subunit in the villous trophoblast and reveal an intriguing example of ancient LTR exaptation to drive tissue-specific gene expression.


Assuntos
Retrovirus Endógenos/metabolismo , Subunidade beta de Receptor de Interleucina-2/biossíntese , Proteínas da Gravidez/biossíntese , Regiões Promotoras Genéticas/fisiologia , Sequências Repetidas Terminais/fisiologia , Trofoblastos/metabolismo , Metilação de DNA/fisiologia , Feminino , Humanos , Especificidade de Órgãos/fisiologia
15.
Microbiome ; 10(1): 156, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36163269

RESUMO

BACKGROUND: Many insects house symbiotic intracellular bacteria (endosymbionts) that provide them with essential nutrients, thus promoting the usage of nutrient-poor habitats. Endosymbiont seclusion within host specialized cells, called bacteriocytes, often organized in a dedicated organ, the bacteriome, is crucial in protecting them from host immune defenses while avoiding chronic host immune activation. Previous evidence obtained in the cereal weevil Sitophilus oryzae has shown that bacteriome immunity is activated against invading pathogens, suggesting endosymbionts might be targeted and impacted by immune effectors during an immune challenge. To pinpoint any molecular determinants associated with such challenges, we conducted a dual transcriptomic analysis of S. oryzae's bacteriome subjected to immunogenic peptidoglycan fragments. RESULTS: We show that upon immune challenge, the bacteriome actively participates in the innate immune response via induction of antimicrobial peptides (AMPs). Surprisingly, endosymbionts do not undergo any transcriptomic changes, indicating that this potential threat goes unnoticed. Immunohistochemistry showed that TCT-induced AMPs are located outside the bacteriome, excluding direct contact with the endosymbionts. CONCLUSIONS: This work demonstrates that endosymbiont protection during an immune challenge is mainly achieved by efficient confinement within bacteriomes, which provides physical separation between host systemic response and endosymbionts. Video Abstract.


Assuntos
Peptidoglicano , Gorgulhos , Animais , Bactérias , Sistema Imunitário , Proteínas de Insetos , Simbiose , Gorgulhos/microbiologia
16.
Commun Biol ; 4(1): 590, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34002013

RESUMO

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.


Assuntos
COVID-19/genética , Biologia Computacional/métodos , Interações Hospedeiro-Patógeno/genética , Pandemias , SARS-CoV-2/genética , Sítios de Ligação , COVID-19/virologia , Citocinas/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica , Genoma Viral , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA-Seq , Serpinas/genética , Transdução de Sinais/genética , Transcriptoma , Replicação Viral/genética
17.
Nat Cell Biol ; 23(7): 704-717, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34253898

RESUMO

Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Elementos de DNA Transponíveis , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Helicase IFIH1 Induzida por Interferon/metabolismo , Agonistas Mieloablativos/farmacologia , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Retrovirus Endógenos/genética , Ativação Enzimática , Células HEK293 , Células-Tronco Hematopoéticas/enzimologia , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Ligantes , Elementos Nucleotídeos Longos e Dispersos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
18.
FASEB J ; 23(5): 1482-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19141532

RESUMO

Combining genome sequence analysis and functional analysis, we show that some full-length copies of tirant are present in heterochromatic regions in Drosophila simulans and that when tested in vitro, these copies have a functional promoter. However, when inserted in heterochromatic regions, tirant copies are inactive in vivo, and only transcription of euchromatic copies can be detected. Thus, our data indicate that the localization of the element is a hallmark of its activity in vivo and raise the question of genomic invasions by transposable elements and the importance of their genomic integration sites.


Assuntos
Drosophila/genética , Genoma de Inseto , Retroelementos , Sequências Repetidas Terminais , Animais
19.
Viruses ; 12(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708087

RESUMO

Insertions of endogenous retroviruses cause a significant fraction of mutations in inbred mice but not all strains are equally susceptible. Notably, most new Intracisternal A particle (IAP) ERV mutagenic insertions have occurred in C3H mice. We show here that strain-specific insertional polymorphic IAPs accumulate faster in C3H/HeJ mice, relative to other sequenced strains, and that IAP transcript levels are higher in C3H/HeJ embryonic stem (ES) cells compared to other ES cells. To investigate the mechanism for high IAP activity in C3H mice, we identified 61 IAP copies in C3H/HeJ ES cells enriched with H3K4me3 (a mark of active promoters) and, among those tested, all are unmethylated in C3H/HeJ ES cells. Notably, 13 of the 61 are specific to C3H/HeJ and are members of the non-autonomous 1Δ1 IAP subfamily that is responsible for nearly all new insertions in C3H. One copy is full length with intact open reading frames and hence potentially capable of providing proteins in trans to other 1Δ1 elements. This potential "master copy" is present in other strains, including 129, but its 5' long terminal repeat (LTR) is methylated in 129 ES cells. Thus, the unusual IAP activity in C3H may be due to reduced epigenetic repression coupled with the presence of a master copy.


Assuntos
Epigenômica , Genes de Partícula A Intracisternal/genética , Genes de Partícula A Intracisternal/fisiologia , Camundongos Endogâmicos C3H/genética , Animais , Células Cultivadas , Células-Tronco Embrionárias , Metilação , Camundongos , Camundongos Endogâmicos C57BL/genética , Regiões Promotoras Genéticas , Especificidade da Espécie , Sequências Repetidas Terminais
20.
G3 (Bethesda) ; 9(3): 855-865, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30658967

RESUMO

All genomes contain repeated sequences that are known as transposable elements (TEs). Among these are endogenous retroviruses (ERVs), which are sequences similar to retroviruses and are transmitted across generations from parent to progeny. These sequences are controlled in genomes through epigenetic mechanisms. At the center of the epigenetic control of TEs are small interfering RNAs of the piRNA class, which trigger heterochromatinization of TE sequences. The tirant ERV of Drosophila simulans displays intra-specific variability in copy numbers, insertion sites, and transcription levels, providing us with a well-suited model to study the dynamic relationship between a TE family and the host genome through epigenetic mechanisms. We show that tirant transcript amounts and piRNA amounts are positively correlated in ovaries in normal conditions, unlike what was previously described following divergent crosses. In addition, we describe tirant insertion polymorphism in the genomes of three D. simulans wild-type strains, which reveals a limited number of insertions that may be associated with gene transcript level changes through heterochromatin spreading and have phenotypic impacts. Taken together, our results participate in the understanding of the equilibrium between the host genome and its TEs.


Assuntos
Elementos de DNA Transponíveis , Drosophila simulans/genética , Retrovirus Endógenos/genética , Epigênese Genética , Genoma de Inseto , Interações Hospedeiro-Patógeno , Animais , Drosophila simulans/virologia , Retrovirus Endógenos/fisiologia , Feminino , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA