Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958908

RESUMO

This study investigates the interaction between titanium oxide nanoparticles (TiO2 NPs) and the heterocyclic fluorophore 6-fluoro,4-hydroxy,2-methylquinoline (6-FHMQ), aiming to understand fluorescence quenching mechanisms and thermodynamic characteristics. Spectroscopic techniques including spectrofluorometry (FL) and spectrophotometry (UV-Vis) were used, with a lifetime decay (τ) of 0.18 ns for 6-FHMQ measured using time correlated single photon counting (TCSPC). The interaction between 6-FHMQ and TiO2 NPs revealed a mix of static and dynamic fluorescence quenching mechanisms, with increasing quenching constants (Ksv) and a higher bimolecular quenching rate constant (Kq). The dynamic nature was highlighted by a temperature-dependent increase in binding sites from 1 to ~ 2. Spontaneous complexation was affirmed by negative change in free energy (ΔG), with negative change in enthalpy (ΔH) and a positive change in entropy (ΔS) values indicating favorable electrostatic and ionic interactions. The impact of varying TiO2 NP concentrations on 6-FHMQ absorption was analyzed using the Benesi-Hildbrand equation, with a quantum yield of 0.61 determined. By forster resonance energy transfer (FRET) theory, the proximity between 6-FHMQ and TiO2 NPs was found to be less than 70 Å. Ground and excited state dipole moments of 6-FHMQ in different solvents were calculated to demonstrate solvent sensing ability and charge transfer properties. Ultimately, this study serves as a testament to the power of scientific innovation in the realms of drug delivery and tissue engineering.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 139: 262-70, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25561305

RESUMO

One-dimensional (1D) zinc oxide (ZnO) hexagonal rods have been successfully synthesized by surfactant free hydrothermal process at different temperatures. It can be found that the reaction temperature play a crucial role in the formation of ZnO uniform hexagonal rods. The possible formation processes of 1-D ZnO hexagonal rods were investigated. The zinc hydroxide acts as the morphology-formative intermediate for the formation of ZnO nanorods. Upon excitation at 325 nm, the sample prepared at 180°C show several emission bands at 400 nm (∼3.10 eV), 420 nm (∼2.95 eV), 482 nm (∼2.57 eV) and 524 nm (∼2.36 eV) corresponding to different kind of defects. TL studies were carried out by pre-irradiating samples with γ-rays ranging from 1 to 7 kGy at room temperature. A well resolved glow peak at ∼354°C was recorded which can be ascribed to deep traps. Furthermore, the defects associated with surface states in ZnO nano-structures are characterized by electron paramagnetic resonance.


Assuntos
Luminescência , Nanotubos/química , Temperatura , Água/química , Óxido de Zinco/química , Óxido de Zinco/síntese química , Espectroscopia de Ressonância de Spin Eletrônica , Raios gama , Nanotubos/ultraestrutura , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Artigo em Inglês | MEDLINE | ID: mdl-21531616

RESUMO

Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of ∼40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 Å, c=5.27563 Å and V=47.684 (Å)(3)) are found to be greater than that of undoped ZnO (a=3.19993 Å, c=5.22546 Å and V=46.336 (Å)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at ∼3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to (4)T(1)→(6)A(1) transition of Mn(2+) ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to (55)Mn hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn(2+) ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (χ) have been evaluated.


Assuntos
Manganês/química , Nanopartículas/química , Fósforo/química , Óxido de Zinco/química , Espectroscopia de Ressonância de Spin Eletrônica , Luminescência , Nanopartículas/ultraestrutura , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 81(1): 53-8, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764361

RESUMO

Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a=3.2511(1) Å, c=5.2076(2) Å, unit cell volume (V)=47.66(5) (Å)(3) and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at ∼375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm(-1) were attributed to the E(2) (high) and E(1) (LO) modes respectively. The broad band at 564 cm(-1) is due to disorder-activated Raman scattering for the A(1) mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm(-1) are due to small defects.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Óxido de Zinco/química , Óxido de Zinco/síntese química , Cristalização/métodos , Temperatura Alta , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Modelos Teóricos , Pós , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA