RESUMO
Modulation of photoassimilate export from the chloroplast is essential for controlling the distribution of fixed carbon in the cell and maintaining optimum photosynthetic rates. In this study, we identified chloroplast TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR 2 (CreTPT2) and CreTPT3 in the green alga Chlamydomonas (Chlamydomonas reinhardtii), which exhibit similar substrate specificities but whose encoding genes are differentially expressed over the diurnal cycle. We focused mostly on CreTPT3 because of its high level of expression and the severe phenotype exhibited by tpt3 relative to tpt2 mutants. Null mutants for CreTPT3 had a pleiotropic phenotype that affected growth, photosynthetic activities, metabolite profiles, carbon partitioning, and organelle-specific accumulation of H2O2. These analyses demonstrated that CreTPT3 is a dominant conduit on the chloroplast envelope for the transport of photoassimilates. In addition, CreTPT3 can serve as a safety valve that moves excess reductant out of the chloroplast and appears to be essential for preventing cells from experiencing oxidative stress and accumulating reactive oxygen species, even under low/moderate light intensities. Finally, our studies indicate subfunctionalization of the TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR (CreTPT) transporters and suggest that there are differences in managing the export of photoassimilates from the chloroplasts of Chlamydomonas and vascular plants.
Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Carbono/metabolismo , Trioses/metabolismo , Fosfatos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismoRESUMO
Photosynthetic organisms frequently experience abiotic stress that restricts their growth and development. Under such circumstances, most absorbed solar energy cannot be used for CO2 fixation and can cause the photoproduction of reactive oxygen species (ROS) that can damage the photosynthetic reaction centers of PSI and PSII, resulting in a decline in primary productivity. This work describes a biological "switch" in the green alga Chlamydomonas reinhardtii that reversibly restricts photosynthetic electron transport (PET) at the cytochrome b6f (Cyt b6f) complex when the capacity for accepting electrons downstream of PSI is severely limited. We specifically show this restriction in STARCHLESS6 (sta6) mutant cells, which cannot synthesize starch when they are limited for nitrogen (growth inhibition) and subjected to a dark-to-light transition. This restriction represents a form of photosynthetic control that causes diminished electron flow to PSI and thereby prevents PSI photodamage but does not appear to rely on a ΔpH. Furthermore, when electron flow is restricted, the plastid alternative oxidase (PTOX) becomes active, functioning as an electron valve that dissipates some excitation energy absorbed by PSII and allows the formation of a proton motive force (PMF) that would drive some ATP production (potentially sustaining PSII repair and nonphotochemical quenching [NPQ]). The restriction at the Cyt b6f complex can be gradually relieved with continued illumination. This study provides insights into how PET responds to a marked reduction in availability of downstream electron acceptors and the protective mechanisms involved.
Assuntos
Complexo Citocromos b6f , Elétrons , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Fotossíntese/fisiologia , Oxirredução , Oxidantes , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , LuzRESUMO
Non-photochemical quenching of excess excitation energy is an important photoprotective mechanism in photosynthetic organisms. In Arabidopsis thaliana, a high quenching capacity is constitutively present and depends on the PsbS protein. In the green alga Chlamydomonas reinhardtii, non-photochemical quenching becomes activated upon high light acclimation and requires the accumulation of light harvesting complex stress-related (LHCSR) proteins. Expression of the PsbS protein in C. reinhardtii has not been reported yet. Here, we show that PsbS is a light-induced protein in C. reinhardtii, whose accumulation under high light is further controlled by CO2 availability. PsbS accumulated after several hours of high light illumination at low CO2 At high CO2, however, PsbS was only transiently expressed under high light and was degraded after 1 h of high light exposure. PsbS accumulation correlated with an enhanced non-photochemical quenching capacity in high light-acclimated cells grown at low CO2 However, PsbS could not compensate for the function of LHCSR in an LHCSR-deficient mutant. Knockdown of PsbS accumulation led to reduction of both non-photochemical quenching capacity and LHCSR3 accumulation. Our data suggest that PsbS is essential for the activation of non-photochemical quenching in C. reinhardtii, possibly by promoting conformational changes required for activation of LHCSR3-dependent quenching in the antenna of photosystem II.
Assuntos
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/genética , Técnicas de Silenciamento de Genes , Complexo de Proteína do Fotossistema II/genéticaRESUMO
Oxygen (O2), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii. This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid.
RESUMO
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Assuntos
Dióxido de Carbono , Chlamydomonas reinhardtii , Dióxido de Carbono/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/genética , Proteínas/metabolismo , Chlamydomonas reinhardtii/metabolismoRESUMO
In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of "photoprotective" genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes (LHCSR1, LHCSR3, and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.
RESUMO
Photosynthetic organisms are frequently exposed to excess light conditions and hence to photo-oxidative stress. To counteract photo-oxidative damage, land plants and most algae make use of non- photochemical quenching (NPQ) of excess light energy, in particular the rapidly inducible and relaxing qE-mechanism. In vascular plants, the constitutively active PsbS protein is the key regulator of qE. In the green algae C. reinhardtii, however, qE activation is only possible after initial high-light (HL) acclimation for several hours and requires the synthesis of LHCSR proteins which act as qE regulators. The precise function of PsbS, which is transiently expressed during HL acclimation in C. reinhardtii, is still unclear. Here, we investigated the impact of different PsbS amounts on HL acclimation characteristics of C. reinhardtii cells. We demonstrate that lower PsbS amounts negatively affect HL acclimation at different levels, including NPQ capacity, electron transport characteristics, antenna organization and morphological changes, resulting in an overall increased HL sensitivity and lower vitality of cells. Contrarily, higher PsbS amounts do not result in a higher NPQ capacity, but nevertheless provide higher fitness and tolerance towards HL stress. Strikingly, constitutively expressed PsbS protein was found to be degraded during HL acclimation. We propose that PsbS is transiently required during HL acclimation for the reorganization of thylakoid membranes and/or antenna proteins along with the activation of NPQ and adjustment of electron transfer characteristics, and that degradation of PsbS is essential in the fully HL acclimated state.