Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 14: 1303724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053998

RESUMO

Introduction: Cytomegalovirus (CMV) is a common herpesvirus with a high prevalence worldwide. After the acute infection phase, CMV can remain latent in several tissues. CD8 T cells in the lungs and salivary glands mainly control its reactivation control. White adipose tissue (WAT) contains a significant population of memory T cells reactive to viral antigens, but CMV specificity has mainly been studied in mouse WAT. Therefore, we obtained blood, omental WAT (oWAT), subcutaneous WAT (sWAT), and liver samples from 11 obese donors to characterize the human WAT adaptive immune landscape from a phenotypic and immune receptor specificity perspective. Methods: We performed high-throughput sequencing of the T cell receptor (TCR) locus to analyze tissue and blood TCR repertoires of the 11 donors. The presence of TCRs specific to CMV epitopes was tested through ELISpot assays. Moreover, phenotypic characterization of T cells was carried out through flow cytometry. Results: High-throughput sequencing analyses revealed that tissue TCR repertoires in oWAT, sWAT, and liver samples were less diverse and dominated by hyperexpanded clones when compared to blood samples. Additionally, we predicted the presence of TCRs specific to viral epitopes, particularly from CMV, which was confirmed by ELISpot assays. Remarkably, we found that oWAT has a higher proportion of CMV-reactive T cells than blood or sWAT. Finally, flow cytometry analyses indicated that most WAT-infiltrated lymphocytes were tissue-resident effector memory CD8 T cells. Discussion: Overall, these findings postulate human oWAT as a major reservoir of CMV-specific T cells, presumably for latent viral reactivation control. This study enhances our understanding of the adaptive immune response in human WAT and highlights its potential role in antiviral defense.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Animais , Camundongos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Epitopos , Tecido Adiposo
2.
Front Endocrinol (Lausanne) ; 13: 818388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370964

RESUMO

The paradigm of mast cells in type 2 diabetes is changing. Although they were first considered deleterious inflammatory cells, now they seem to be important players driving adipose tissue homeostasis. Here we have employed a flow cytometry-based approach for measuring the surface expression of 4 proteins (CD45, CD117, CD203c, and FcϵRI) on mast cells of omental (o-WAT) and subcutaneous white adipose tissue (s-WAT) in a cohort of 96 patients with morbid obesity. The cohort was split into three groups: non-T2D, pre-T2D, and T2D. Noteworthy, patients with T2D have a mild condition (HbA1c <7%). In o-WAT, mast cells of patients with T2D have a decrease in the surface expression of CD45 (p=0.0013), CD117 (p=0.0066), CD203c (p=0.0025), and FcϵRI (p=0.043). Besides, in s-WAT, the decrease was seen only in CD117 (p=0.046). These results indicate that T2D affects more to mast cells in o-WAT than in s-WAT. The decrease in these four proteins has serious effects on mast cell function. CD117 is critical for mast cell survival, while CD45 and FcϵRI are important for mast cell activation. Additionally, CD203c is only present on the cell surface after granule release. Taking together these observations, we suggest that mast cells in o-WAT of patients with T2D have a decreased survival, activation capacity, and secretory function.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Antígenos Comuns de Leucócito , Mastócitos/fisiologia , Obesidade Mórbida/complicações , Diester Fosfórico Hidrolases , Proteínas Proto-Oncogênicas c-kit , Pirofosfatases , Receptores de IgE/metabolismo
3.
Front Immunol ; 12: 664576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093556

RESUMO

Type 2 diabetes (T2D) is a rising global health problem mainly caused by obesity and a sedentary lifestyle. In healthy individuals, white adipose tissue (WAT) has a relevant homeostatic role in glucose metabolism, energy storage, and endocrine signaling. Mast cells contribute to these functions promoting WAT angiogenesis and adipogenesis. In patients with T2D, inflammation dramatically impacts WAT functioning, which results in the recruitment of several leukocytes, including monocytes, that enhance this inflammation. Accordingly, the macrophages population rises as the WAT inflammation increases during the T2D status worsening. Since mast cell progenitors cannot arrive at WAT, the amount of WAT mast cells depends on how the new microenvironment affects progenitor and differentiated mast cells. Here, we employed a flow cytometry-based approach to analyze the number of mast cells from omental white adipose tissue (o-WAT) and subcutaneous white adipose tissue (s-WAT) in a cohort of 100 patients with obesity. Additionally, we measured the number of mast cell progenitors in a subcohort of 15 patients. The cohort was divided in three groups: non-T2D, pre-T2D, and T2D. Importantly, patients with T2D have a mild condition (HbA1c <7%). The number of mast cells and mast cell progenitors was lower in patients with T2D in both o-WAT and s-WAT in comparison to subjects from the pre-T2D and non-T2D groups. In the case of mast cells in o-WAT, there were statistically significant differences between non-T2D and T2D groups (p = 0.0031), together with pre-T2D and T2D groups (p=0.0097). However, in s-WAT, the differences are only between non-T2D and T2D groups (p=0.047). These differences have been obtained with patients with a mild T2D condition. Therefore, little changes in T2D status have a huge impact on the number of mast cells in WAT, especially in o-WAT. Due to the importance of mast cells in WAT physiology, their decrease can reduce the capacity of WAT, especially o-WAT, to store lipids and cause hypoxic cell deaths that will trigger inflammation.


Assuntos
Tecido Adiposo/patologia , Contagem de Células , Diabetes Mellitus Tipo 2/patologia , Mastócitos/patologia , Obesidade/patologia , Adipogenia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Imunofenotipagem , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Neovascularização Fisiológica , Obesidade/metabolismo
4.
Sci Rep ; 8(1): 15203, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315279

RESUMO

Obesity-related comorbidities are, in large part, originated from the dysfunction of adipose tissue. Most of them revert after the normalization of body mass. Adipose tissue is essentially occupied by adipocytes. However, different populations of immunological cells and adipocyte precursor cells (AdPCs) are the main cellular components of tissue. During obesity, body fat depots acquire a low-level chronic inflammation and adipocytes increase in number and volume. Conversely, weight loss improves the inflammatory phenotype of adipose tissue immune cells and reduces the volume of adipocytes. Nevertheless, very little is known about the evolution of the human AdPCs reservoir. We have developed a flow cytometry-based methodology to simultaneously quantify the main cell populations of adipose tissue. Starting from this technical approach, we have studied human adipose tissue samples (visceral and subcutaneous) obtained at two different physiological situations: at morbid obesity and after bariatric surgery-induced weight loss. We report a considerable increase of the AdPCs reservoir after losing weight and several changes in the immune cells populations of adipose tissue (mast cells increase, neutrophils decrease and macrophages switch phenotype). No changes were observed for T-lymphocytes, which are discussed in the context of recent findings.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Cirurgia Bariátrica , Citometria de Fluxo/métodos , Células-Tronco/citologia , Redução de Peso/fisiologia , Adulto , Contagem de Células , Tamanho Celular , Estudos de Coortes , Células Endoteliais/metabolismo , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA