Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 209(1): 35-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21170707

RESUMO

To better understand normative behavior for quantitative evaluation of motor recovery after injury, we studied arm movements by non-injured rhesus monkeys during a food-retrieval task. While seated, monkeys reached, grasped, and retrieved food items. We recorded three-dimensional kinematics and muscle activity, and used inverse dynamics to calculate joint moments due to gravity, segmental interactions, and to the muscles and tissues of the arm. Endpoint paths showed curvature in three dimensions, suggesting that maintaining straight paths was not an important constraint. Joint moments were dominated by gravity. Generalized muscle and interaction moments were less than half of the gravitational moments. The relationships between shoulder and elbow resultant moments were linear during both reach and retrieval. Although both reach and retrieval required elbow flexor moments, an elbow extensor (triceps brachii) was active during both phases. Antagonistic muscles of both the elbow and hand were co-activated during reach and retrieval. Joint behavior could be described by lumped-parameter models analogous to torsional springs at the joints. Minor alterations to joint quasi-stiffness properties, aided by interaction moments, result in reciprocal movements that evolve under the influence of gravity. The strategies identified in monkeys to reach, grasp, and retrieve items will allow the quantification of prehension during recovery after a spinal cord injury and the effectiveness of therapeutic interventions.


Assuntos
Braço/fisiologia , Macaca mulatta/fisiologia , Orientação/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Visão Ocular/fisiologia , Animais , Braço/inervação , Fenômenos Biomecânicos/fisiologia , Articulação do Cotovelo/fisiologia , Eletromiografia/métodos , Gravitação , Mãos/fisiologia , Força da Mão/fisiologia , Articulações/fisiologia , Macaca mulatta/psicologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Testes Neuropsicológicos/normas , Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/fisiologia
2.
J Biomech ; 41(3): 610-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18061600

RESUMO

As a first step towards developing a dynamic model of the rat hindlimb, we measured muscle attachment and joint center coordinates relative to bony landmarks using stereophotogrammetry. Using these measurements, we analyzed muscle moment arms as functions of joint angle for most hindlimb muscles, and tested the hypothesis that postural change alone is sufficient to alter the function of selected muscles of the leg. We described muscle attachment sites as second-order curves. The length of the fit parabola and residual errors in the orthogonal directions give an estimate of muscle attachment sizes, which are consistent with observations made during dissection. We modeled each joint as a moving point dependent on joint angle; relative endpoint errors less than 7% indicate this method as accurate. Most muscles have moment arms with a large range across the physiological domain of joint angles, but their moment arms peak and vary little within the locomotion domain. The small variation in moment arms during locomotion potentially simplifies the neural control requirements during this phase. The moment arms of a number of muscles cross zero as angle varies within the quadrupedal locomotion domain, indicating they are intrinsically stabilizing. However, in the bipedal locomotion domain, the moment arms of these muscles do not cross zero and thus are no longer intrinsically stabilizing. We found that muscle function is largely determined by the change in moment arm with joint angle, particularly the transition from quadrupedal to bipedal posture, which may alter an intrinsically stabilizing arrangement or change the control burden.


Assuntos
Membro Posterior/fisiologia , Articulações/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Animais , Feminino , Ratos , Ratos Sprague-Dawley
3.
Ann Phys Rehabil Med ; 58(4): 225-231, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26205686

RESUMO

Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a "stepping" movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI.


Assuntos
Geradores de Padrão Central/fisiologia , Medula Espinal/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Cóccix , Eletrodos , Potencial Evocado Motor , Exoesqueleto Energizado , Humanos , Traumatismos da Medula Espinal/reabilitação , Vértebras Torácicas , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Caminhada/fisiologia
4.
Brain Res ; 1619: 124-38, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25451131

RESUMO

Recent preclinical advances highlight the therapeutic potential of treatments aimed at boosting regeneration and plasticity of spinal circuitry damaged by spinal cord injury (SCI). With several promising candidates being considered for translation into clinical trials, the SCI community has called for a non-human primate model as a crucial validation step to test efficacy and validity of these therapies prior to human testing. The present paper reviews the previous and ongoing efforts of the California Spinal Cord Consortium (CSCC), a multidisciplinary team of experts from 5 University of California medical and research centers, to develop this crucial translational SCI model. We focus on the growing volumes of high resolution data collected by the CSCC, and our efforts to develop a biomedical informatics framework aimed at leveraging multidimensional data to monitor plasticity and repair targeting recovery of hand and arm function. Although the main focus of many researchers is the restoration of voluntary motor control, we also describe our ongoing efforts to add assessments of sensory function, including pain, vital signs during surgery, and recovery of bladder and bowel function. By pooling our multidimensional data resources and building a unified database infrastructure for this clinically relevant translational model of SCI, we are now in a unique position to test promising therapeutic strategies' efficacy on the entire syndrome of SCI. We review analyses highlighting the intersection between motor, sensory, autonomic and pathological contributions to the overall restoration of function. This article is part of a Special Issue entitled SI: Spinal cord injury.


Assuntos
Modelos Animais de Doenças , Informática Médica , Plasticidade Neuronal , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Animais , Humanos , Macaca mulatta , Atividade Motora , Traumatismos da Medula Espinal/fisiopatologia , Pesquisa Translacional Biomédica , Resultado do Tratamento
5.
J Biomech ; 43(7): 1243-50, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20189180

RESUMO

A finite element model was used to investigate the counter-intuitive experimental observation that some regions of the aponeuroses of a loaded and contracting muscle may shorten rather than undergo an expected lengthening. The model confirms the experimental findings and suggests that pennation angle plays a significant role in determining whether regions of the aponeuroses stretch or shorten. A smaller pennation angles (25 degrees ) was accompanied by aponeurosis lengthening whereas a larger pennation angle (47 degrees ) was accompanied by mixed strain effects depending upon location along the length of the aponeurosis. This can be explained by the Poisson effect during muscle contraction and a Mohr's circle analogy. Constant volume constraint requires that fiber cross sectional dimensions increase when a fiber shortens. The opposing influences of these two strains upon the aponeurosis combine in proportion to the pennation angle. Lower pennation angles emphasize the influence of fiber shortening upon the aponeurosis and thus favor aponeurosis compression, whereas higher pennation angles increase the influence of cross sectional changes and therefore favor aponeurosis stretch. The distance separating the aponeuroses was also found to depend upon pennation angle during simulated contractions. Smaller pennation angles favored increased aponeurosis separation larger pennation angles favored decreased separation. These findings caution that measures of the mechanical properties of aponeuroses in intact muscle may be affected by contributions from adjacent muscle fibers and that the influence of muscle fibers on aponeurosis strain will depend upon the fiber pennation angle.


Assuntos
Análise de Elementos Finitos , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA