Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Soc Nephrol ; 29(3): 775-783, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326158

RESUMO

The epithelial Wolffian duct (WD) inserts into the cloaca (primitive bladder) before metanephric kidney development, thereby establishing the initial plumbing for eventual joining of the ureters and bladder. Defects in this process cause common anomalies in the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). However, developmental, cellular, and molecular mechanisms of WD-cloaca fusion are poorly understood. Through systematic analysis of early WD tip development in mice, we discovered that a novel process of spatiotemporally regulated apoptosis in WD and cloaca was necessary for WD-cloaca fusion. Aberrant RET tyrosine kinase signaling through tyrosine (Y) 1062, to which PI3K- or ERK-activating proteins dock, or Y1015, to which PLCγ docks, has been shown to cause CAKUT-like defects. Cloacal apoptosis did not occur in RetY1062F mutants, in which WDs did not reach the cloaca, or in RetY1015F mutants, in which WD tips reached the cloaca but did not fuse. Moreover, inhibition of ERK or apoptosis prevented WD-cloaca fusion in cultures, and WD-specific genetic deletion of YAP attenuated cloacal apoptosis and WD-cloacal fusion in vivo Thus, cloacal apoptosis requires direct contact and signals from the WD tip and is necessary for WD-cloacal fusion. These findings may explain the mechanisms of many CAKUT.


Assuntos
Apoptose/genética , Cloaca/embriologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Anormalidades Urogenitais/genética , Ductos Mesonéfricos/embriologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Cloaca/anormalidades , Cloaca/metabolismo , Rim/embriologia , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ureter/embriologia , Ductos Mesonéfricos/anormalidades , Ductos Mesonéfricos/metabolismo , Proteínas de Sinalização YAP
2.
Kidney Int ; 93(5): 1142-1153, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29459093

RESUMO

Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.


Assuntos
Rim/anormalidades , Mutação , Fatores de Transcrição SOXC/genética , Ureter/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Predisposição Genética para Doença , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos Knockout , Morfogênese , Fenótipo , Fatores de Risco , Fatores de Transcrição SOXC/deficiência , Ureter/metabolismo , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/patologia
3.
Development ; 142(15): 2696-703, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26243870

RESUMO

Despite the high occurrence of congenital abnormalities of the lower urinary tract in humans, the molecular, cellular and morphological aspects of their development are still poorly understood. Here, we use a conditional knockout approach to inactivate within the nephric duct (ND) lineage the two effectors of the Hippo pathway, Yap and Taz. Deletion of Yap leads to hydronephrotic kidneys with blind-ending megaureters at birth. In Yap mutants, the ND successfully migrates towards, and contacts, the cloaca. However, close analysis reveals that the tip of the Yap(-/-) ND forms an aberrant connection with the cloaca and does not properly insert into the cloaca, leading to later detachment of the ND from the cloaca. Taz deletion from the ND does not cause any defect, but analysis of Yap(-/-);Taz(-/-) NDs indicates that both genes play partially redundant roles in ureterovesical junction formation. Aspects of the Yap(-/-) phenotype resemble hypersensitivity to RET signaling, including excess budding of the ND, increased phospho-ERK and increased expression of Crlf1, Sprouty1, Etv4 and Etv5. Importantly, the Yap(ND) (-/-) ND phenotype can be largely rescued by reducing Ret gene dosage. Taken together, these results suggest that disrupting Yap/Taz activities enhances Ret pathway activity and contributes to pathogenesis of lower urinary tract defects in human infants.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Morfogênese/fisiologia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/fisiologia , Sistema Urinário/embriologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Bromodesoxiuridina , Proteínas de Ciclo Celular , Imunofluorescência , Galactosídeos , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Indóis , Camundongos , Fosfoproteínas/genética , Transativadores , Proteínas de Sinalização YAP
4.
Development ; 142(15): 2564-73, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116661

RESUMO

Regulation of the balance between progenitor self-renewal and differentiation is crucial to development. In the mammalian kidney, reciprocal signalling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin FAT4 or its ligand Dachsous 1 (DCHS1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM). This has been proposed to be due to misregulation of the Hippo kinase pathway transcriptional co-activator YAP. Here, we use tissue-specific deletions to prove that FAT4 acts non-autonomously in the renal stroma to control nephron progenitors. We show that loss of Yap from the CM in Fat4-null mice does not reduce the expanded CM, indicating that FAT4 regulates the CM independently of YAP. Analysis of Six2(-/-);Fat4(-/-) double mutants demonstrates that excess progenitors in Fat4 mutants are dependent on Six2, a crucial regulator of nephron progenitor self-renewal. Electron microscopy reveals that cell organisation is disrupted in Fat4 mutants. Gene expression analysis demonstrates that the expression of Notch and FGF pathway components are altered in Fat4 mutants. Finally, we show that Dchs1, and its paralogue Dchs2, function in a partially redundant fashion to regulate the number of nephron progenitors. Our data support a model in which FAT4 in the stroma binds to DCHS1/2 in the mouse CM to restrict progenitor self-renewal.


Assuntos
Caderinas/metabolismo , Diferenciação Celular/fisiologia , Néfrons/ultraestrutura , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise de Variância , Animais , Proteínas de Ciclo Celular , Linhagem da Célula/fisiologia , Imunofluorescência , Perfilação da Expressão Gênica , Via de Sinalização Hippo , Immunoblotting , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sequência de RNA , Proteínas de Sinalização YAP
5.
J Am Soc Nephrol ; 28(3): 852-861, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27647853

RESUMO

In the kidney, formation of the functional filtration units, the nephrons, is essential for postnatal life. During development, mesenchymal progenitors tightly regulate the balance between self-renewal and differentiation to give rise to all nephron epithelia. Here, we investigated the functions of the Hippo pathway serine/threonine-protein kinases Lats1 and Lats2, which phosphorylate and inhibit the transcriptional coactivators Yap and Taz, in nephron progenitor cells. Genetic deletion of Lats1 and Lats2 in nephron progenitors of mice led to disruption of nephrogenesis, with an accumulation of spindle-shaped cells in both cortical and medullary regions of the kidney. Lineage-tracing experiments revealed that the cells that accumulated in the interstitium derived from nephron progenitor cells and expressed E-cadherin as well as vimentin, a myofibroblastic marker not usually detected after mesenchymal-to-epithelial transition. The accumulation of these interstitial cells associated with collagen deposition and ectopic expression of the myofibroblastic markers vimentin and α-smooth-muscle actin in developing kidneys. Although these myofibroblastic cells had high Yap and Taz accumulation in the nucleus concomitant with a loss of phosphorylated Yap, reduction of Yap and/or Taz expression levels completely rescued the Lats1/2 phenotype. Taken together, our results demonstrate that Lats1/2 kinases restrict Yap/Taz activities to promote nephron progenitor cell differentiation in the mammalian kidney. Notably, our data also show that myofibroblastic cells can differentiate from nephron progenitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Miofibroblastos/fisiologia , Néfrons/citologia , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Células-Tronco/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Aciltransferases , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Epitélio , Camundongos , Fosforilação , Proteínas de Sinalização YAP
6.
J Am Soc Nephrol ; 27(1): 216-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26015453

RESUMO

FSGS is the most common primary glomerular disease underlying ESRD in the United States and is increasing in incidence globally. FSGS results from podocyte injury, yet the mechanistic details of disease pathogenesis remain unclear. This has resulted in an unmet clinical need for cell-specific therapy in the treatment of FSGS and other proteinuric kidney diseases. We previously identified Yes-associated protein (YAP) as a prosurvival signaling molecule, the in vitro silencing of which increases podocyte susceptibility to apoptotic stimulus. YAP is a potent oncogene that is a prominent target for chemotherapeutic drug development. In this study, we tested the hypothesis that podocyte-specific deletion of Yap leads to proteinuric kidney disease through increased podocyte apoptosis. Yap was selectively silenced in podocytes using Cre-mediated recombination controlled by the podocin promoter. Yap silencing in podocytes resulted in podocyte apoptosis, podocyte depletion, proteinuria, and an increase in serum creatinine. Histologically, features characteristic of FSGS, including mesangial sclerosis, podocyte foot process effacement, tubular atrophy, interstitial fibrosis, and casts, were observed. In human primary FSGS, we noted reduced glomerular expression of YAP. Taken together, these results suggest a role for YAP as a physiologic antagonist of podocyte apoptosis, the signaling of which is essential for maintaining the integrity of the glomerular filtration barrier. These data suggest potential nephrotoxicity with strategies directed toward inhibition of YAP function. Further studies should evaluate the role of YAP in proteinuric glomerular disease pathogenesis and its potential utility as a therapeutic target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Deleção de Genes , Glomerulosclerose Segmentar e Focal/genética , Fosfoproteínas/genética , Podócitos/fisiologia , Insuficiência Renal/genética , Animais , Proteínas de Ciclo Celular , Progressão da Doença , Humanos , Camundongos , Camundongos Knockout , Proteínas de Sinalização YAP
7.
PLoS Genet ; 9(3): e1003380, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555292

RESUMO

Yap is a transcriptional co-activator that regulates cell proliferation and apoptosis downstream of the Hippo kinase pathway. We investigated Yap function during mouse kidney development using a conditional knockout strategy that specifically inactivated Yap within the nephrogenic lineage. We found that Yap is essential for nephron induction and morphogenesis, surprisingly, in a manner independent of regulation of cell proliferation and apoptosis. We used microarray analysis to identify a suite of novel Yap-dependent genes that function during nephron formation and have been implicated in morphogenesis. Previous in vitro studies have indicated that Yap can respond to mechanical stresses in cultured cells downstream of the small GTPases RhoA. We find that tissue-specific inactivation of the Rho GTPase Cdc42 causes a severe defect in nephrogenesis that strikingly phenocopies loss of Yap. Ablation of Cdc42 decreases nuclear localization of Yap, leading to a reduction of Yap-dependent gene expression. We propose that Yap responds to Cdc42-dependent signals in nephron progenitor cells to activate a genetic program required to shape the functioning nephron.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Rim , Morfogênese , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular , Rim/crescimento & desenvolvimento , Rim/metabolismo , Camundongos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
8.
Hum Mol Genet ; 20(6): 1143-53, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21212101

RESUMO

Congenital abnormalities of the kidney and urinary tract are some of the most common defects detected in the unborn child. Kidney growth is controlled by the GDNF/RET signalling pathway, but the molecular events required for the activation of RET downstream targets are still poorly understood. Here we show that SOX9, a gene involved in campomelic dysplasia (CD) in humans, together with its close homologue SOX8, plays an essential role in RET signalling. Expression of SOX9 can be found from the earliest stages of renal development within the ureteric tip, the ureter mesenchyme and in a segment-specific manner during nephrogenesis. Using a tissue-specific knockout approach, we show that, in the ureteric tip, SOX8 and SOX9 are required for ureter branching, and double-knockout mutants exhibit severe kidney defects ranging from hypoplastic kidneys to renal agenesis. Further genetic analysis shows that SOX8/9 are required downstream of GDNF signalling for the activation of RET effector genes such as Sprouty1 and Etv5. At later stages of development, SOX9 is required to maintain ureteric tip identity and SOX9 ablation induces ectopic nephron formation. Taken together, our study shows that SOX9 acts at multiple steps during kidney organogenesis and identifies SOX8 and SOX9 as key factors within the RET signalling pathway. Our results also explain the aetiology of kidney hypoplasia found in a proportion of CD patients.


Assuntos
Displasia Campomélica/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Animais , Displasia Campomélica/embriologia , Displasia Campomélica/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Organogênese , Proteínas Proto-Oncogênicas c-ret/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
9.
Nat Commun ; 7: 12309, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27480037

RESUMO

Branching morphogenesis is a complex biological process common to the development of most epithelial organs. Here we demonstrate that NF2, LATS1/2 and YAP play a critical role in branching morphogenesis in the mouse kidney. Removal of Nf2 or Lats1/2 from the ureteric bud (UB) lineage causes loss of branching morphogenesis that is rescued by loss of one copy of Yap and Taz, and phenocopied by YAP overexpression. Mosaic analysis demonstrates that cells with high YAP expression have reduced contribution to UB tips, similar to Ret(-/-) cells, and that YAP suppresses RET signalling and tip identity. Conversely, Yap/Taz UB-deletion leads to cyst-like branching and expansion of UB tip markers, suggesting a shift towards tip cell identity. Based on these data we propose that NF2 and the Hippo pathway locally repress YAP/TAZ activity in the UB to promote subsequent splitting of the tip to allow branching morphogenesis.


Assuntos
Rim/metabolismo , Morfogênese/genética , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Via de Sinalização Hippo , Rim/embriologia , Camundongos Knockout , Camundongos Transgênicos , Neurofibromina 2/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ureter/embriologia , Ureter/metabolismo , Proteínas de Sinalização YAP
10.
Cell Rep ; 12(8): 1325-38, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26279573

RESUMO

After acute kidney injury (AKI), surviving cells within the nephron proliferate and repair. We identify Sox9 as an acute epithelial stress response in renal regeneration. Translational profiling after AKI revealed a rapid upregulation of Sox9 within proximal tubule (PT) cells, the nephron cell type most vulnerable to AKI. Descendants of Sox9(+) cells generate the bulk of the nephron during development and regenerate functional PT epithelium after AKI-induced reactivation of Sox9 after renal injury. After restoration of renal function post-AKI, persistent Sox9 expression highlights regions of unresolved damage within injured nephrons. Inactivation of Sox9 in PT cells pre-injury indicates that Sox9 is required for the normal course of post-AKI recovery. These findings link Sox9 to cell intrinsic mechanisms regulating development and repair of the mammalian nephron.


Assuntos
Injúria Renal Aguda/metabolismo , Reepitelização , Fatores de Transcrição SOX9/metabolismo , Ativação Transcricional , Animais , Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Camundongos , Néfrons/citologia , Néfrons/metabolismo , Fatores de Transcrição SOX9/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA