Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39340187

RESUMO

Polyphenisms occur when phenotypic plasticity produces morphologically distinct phenotypes from the same genotype. Plasticity is maintained through fitness trade-offs which are conferred to different phenotypes under specific environmental contexts. Predicting the impacts of contemporary climate change on phenotypic plasticity is critical for climate-sensitive animals like amphibians, but elucidating the selective pressures maintaining polyphenisms requires a framework to control for all mechanistic drivers of plasticity. Using a 32-year dataset documenting the larval and adult histories of 717 Arizona tiger salamanders (Ambystoma mavortium nebulosum), we determined how annual variation in climate and density dependence explained the maintenance of two distinct morphs (terrestrial metamorph vs. aquatic paedomorph) in a high-elevation polyphenism. The effects of climate and conspecific density on morph development were evaluated with piecewise structural equation models (SEM) to tease apart the direct and indirect pathways by which these two mechanisms affect phenotypic plasticity. Climate had a direct effect on morph outcome whereby longer growing seasons favoured metamorphic outcomes. Also, climate had indirect effects on morph outcome as mediated through density-dependent effects, such as long overwintering coldspells corresponding to high cannibal densities and light snowpacks corresponding to high larval densities, both of which promoted paedomorphic outcomes. Both climate and density dependence serve as important proxies for growth and resource limitation, which are important underlying drivers of the phenotypic plasticity in animal polyphenisms. Our findings motivate new studies to determine how contemporary climate change will alter the selective pressures maintaining phenotypic plasticity and polyphenisms.

2.
J Anim Ecol ; 92(9): 1815-1827, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353993

RESUMO

Fitness trade-offs are a foundation of ecological and evolutionary theory because trade-offs can explain life history variation, phenotypic plasticity, and the existence of polyphenisms. Using a 32-year mark-recapture dataset on lifetime fitness for 1093 adult Arizona tiger salamanders (Ambystoma mavortium nebulosum) from a high elevation, polyphenic population, we evaluated the extent to which two life history morphs (aquatic paedomorphs vs. terrestrial metamorphs) exhibited fitness trade-offs in breeding and body condition with respect to environmental variation (e.g. climate) and internal state-based variables (e.g. age). Both morphs displayed a similar response to higher probabilities of breeding during years of high spring precipitation (i.e. not indicative of a morph-specific fitness trade-off). There were likely no climate-induced fitness trade-offs on breeding state for the two life history morphs because precipitation and water availability are vital to amphibian reproduction. Body condition displayed a contrasting response for the two morphs that was indicative of a climate-induced fitness trade-off. While metamorphs exhibited a positive relationship with summer snowpack conditions, paedomorphs were unaffected. Fitness trade-offs from summer snowpack are likely due to extended hydroperiods in temporary ponds, where metamorphs gain a fitness advantage during the summer growing season by exploiting resources that are unavailable to paeodomorphs. However, paedomorphs appear to have the overwintering fitness advantage because they consistently had higher body condition than metamorphs at the start of the summer growing season. Our results reveal that climate and habitat type (metamorphs as predominately terrestrial, paedomorphs as fully aquatic) interact to confer different advantages for each morph. These results advance our current understanding of fitness trade-offs in this well-studied polyphenic amphibian by integrating climate-based mechanisms. Our conclusions prompt future studies to explore how climatic variation can maintain polyphenisms and promote life history diversity, as well as the implications of climate change for polyphenisms.


Assuntos
Características de História de Vida , Metamorfose Biológica , Animais , Metamorfose Biológica/fisiologia , Ambystoma , Ecossistema , Evolução Biológica
3.
J Exp Zool A Ecol Integr Physiol ; 337(4): 403-411, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982510

RESUMO

Quantifying ectotherm body temperature is important to understand physiological performance under environmental change. The increasing availability of small, commercially-available animal-borne biologgers increases accessibility to high-quality body temperature data. However, amphibians present several challenges to successful datalogger implantation including small body sizes and physiologically active skin. We developed a method for the implantation, extraction, and validation of temperature biologgers in captive salamanders. We assessed the effect of biologger implantation and extraction surgery on body condition. Implantation had no effects on short or long-term body condition. Body condition also did not differ between implant and control groups after datalogger extraction. Biologgers did not alter preferred temperature in a laboratory thermal gradient, indicating that temperature data would not be biased by implantation. We provide detailed recommendations for datalogger placement and refinement of surgical techniques to further improve outcomes, enhance our understanding of fitness, species range limitations, and responses to environmental and climatic change.


Assuntos
Anfíbios , Mudança Climática , Anfíbios/fisiologia , Animais , Temperatura Corporal , Temperatura , Urodelos
4.
5.
Ecology ; 102(2): e03228, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098659
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA