Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1334819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606285

RESUMO

COVID-19, the infectious disease caused by the most recently discovered coronavirus SARS- CoV-2, has caused millions of sick people and thousands of deaths all over the world. The viral positive-sense single-stranded RNA encodes 31 proteins among which the spike (S) is undoubtedly the best known. Recently, protein E has been reputed as a potential pharmacological target as well. It is essential for the assembly and release of the virions in the cell. Literature describes protein E as a voltage-dependent channel with preference towards monovalent cations whose intracellular expression, though, alters Ca2+ homeostasis and promotes the activation of the proinflammatory cascades. Due to the extremely high sequence identity of SARS-CoV-2 protein E (E-2) with the previously characterized E-1 (i.e., protein E from SARS-CoV) many data obtained for E-1 were simply adapted to the other. Recent solid state NMR structure revealed that the transmembrane domain (TMD) of E-2 self-assembles into a homo-pentamer, albeit the oligomeric status has not been validated with the full-length protein. Prompted by the lack of a common agreement on the proper structural and functional features of E-2, we investigated the specific mechanism/s of pore-gating and the detailed molecular structure of the most cryptic protein of SARS-CoV-2 by means of MD simulations of the E-2 structure and by expressing, refolding and analyzing the electrophysiological activity of the transmembrane moiety of the protein E-2, in its full length. Our results show a clear agreement between experimental and predictive studies and foresee a mechanism of activity based on Ca2+ affinity.

2.
J Am Soc Mass Spectrom ; 35(7): 1422-1433, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38832804

RESUMO

Voltage-Dependent Anion Channel isoforms (VDAC1, VDAC2, and VDAC3) are relevant components of the outer mitochondrial membrane (OMM) and play a crucial role in regulation of metabolism and in survival pathways. As major players in the regulation of cellular metabolism and apoptosis, VDACs can be considered at the crossroads between two broad families of pathologies, namely, cancer and neurodegeneration, the former being associated with elevated glycolytic rate and suppression of apoptosis in cancer cells, the latter characterized by mitochondrial dysfunction and increased cell death. Recently, we reported the characterization of the oxidation pattern of methionine and cysteines in rat and human VDACs showing that each cysteine in these proteins is present with a preferred oxidation state, ranging from the reduced to the trioxidized form, and such an oxidation state is remarkably conserved between rat and human VDACs. However, the presence and localization of disulfide bonds in VDACs, a key point for their structural characterization, have so far remained undetermined. Herein we have investigated by nanoUHPLC/High-Resolution nanoESI-MS/MS the position of intramolecular disulfide bonds in rat VDAC2 (rVDAC2), a protein that contains 11 cysteines. To this purpose, extraction, purification, and enzymatic digestions were carried out at slightly acidic or neutral pH in order to minimize disulfide bond interchange. The presence of six disulfide bridges was unequivocally determined, including a disulfide bridge linking the two adjacent cysteines 4 and 5, a disulfide bridge linking cysteines 9 and 14, and the alternative disulfide bridges between cysteines 48, 77, and 104. A disulfide bond, which is very resistant to reduction, between cysteines 134 and 139 was also detected. In addition to the previous findings, these results significantly extend the characterization of the oxidation state of cysteines in rVDAC2 and show that it is highly complex and presents unusual features. Data are available via ProteomeXchange with the identifier PXD044041.


Assuntos
Sequência de Aminoácidos , Dissulfetos , Espectrometria de Massas em Tandem , Canal de Ânion 2 Dependente de Voltagem , Animais , Canal de Ânion 2 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/análise , Ratos , Dissulfetos/química , Dissulfetos/análise , Dissulfetos/metabolismo , Espectrometria de Massas em Tandem/métodos , Oxirredução , Cisteína/química , Cisteína/análise , Dados de Sequência Molecular , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA