RESUMO
With increasing public awareness of PFAS, and their presence in biological and environmental media across the globe, comes a matching increase in the number of PFAS monitoring studies. As more matrices and sample cohorts are examined, there are more opportunities for matrix interferents to appear as PFAS where there are none (i.e., "seeing ghosts"), impacting subsequent reports. Addressing these ghosts is vital for the research community, as proper analytical measurements are necessary for decision-makers to understand the presence, levels, and potential risks associated with PFAS and protect human and environmental health. To date, PFAS interference has been identified in several matrices (e.g., food, shellfish, blood, tissue); however, additional unidentified interferents are likely to be observed as PFAS research continues to expand. Therefore, the aim of this commentary is several fold: (1) to create and support a publicly available dataset of all currently known PFAS analytical interferents, (2) to allow for the expansion of that dataset as more sources of interference are identified, and (3) to advise the wider scientific community on how to both identify and eliminate current or new analytical interference in PFAS analyses.
Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Alimentos Marinhos/análise , Frutos do Mar/análise , Membrana EritrocíticaRESUMO
The National Institute of Standards and Technology (NIST) generates and maintains thousands of Standard Reference Materials (SRMs) to serve commerce worldwide. Many SRMs contain metrologically traceable mass fractions of known organic chemicals and are commercially available to aid the analytical chemistry community. One such material, NIST SRM 1957 Organic Contaminants in Non-Fortified Human Serum, was one of the first materials issued by NIST with measurements for per- and polyfluoroalkyl substances (PFAS) listed on the Certificate of Analysis and was commercially available in 2009. Since the release of SRM 1957, nearly 400 units have been sold to date, and over 50 publications related to PFAS measurements have included this material for multiple analytical purposes, such as a quality control material, for interlaboratory comparison, as an in-house comparison tool, for inter- and intra-day measurement accuracy, as an indicator of isomeric patterns of PFAS, and for other uses. This perspective details the ways SRM 1957 is utilized by the analytical community and how data have been reported in the literature. A discussion on accurately comparing SRM data to generated data is included. Furthermore, we conducted an in-depth investigation around additional applications for NIST SRMs, such as a matrix-matched reference material, and for the identification of targeted compounds during high-resolution mass spectrometry data collection. Ultimately, this manuscript illustratively describes the ways to utilize a NIST SRMs for chemicals of emerging concern.
Assuntos
Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Humanos , Padrões de ReferênciaRESUMO
Prenatal exposure to per- and polyfluoroalkyl substances (PFAS), a ubiquitous class of chemicals, is associated with adverse outcomes such as pre-eclampsia, low infant birth weight, and later-life adiposity. The objectives of this study were to examine PFAS levels in the placenta and identify sociodemographic risk factors in a high-risk pregnancy cohort (n = 122) in Chapel Hill, North Carolina. Of concern, PFOS, PFHxS, PFHpS, and PFUnA were detected above the reporting limit in 99, 75, 55, and 49% of placentas, respectively. Maternal race/ethnicity was associated with significant differences in PFUnA levels. While the data from this high-risk cohort did not provide evidence for an association with hypertensive disorders of pregnancy, fetal growth, or gestational age, the prevalence of detectable PFAS in the placenta suggests a need to biomonitor for exposure to PFAS during pregnancy. Future research should investigate factors underlying the differences in PFAS levels in association with a mother's race/ethnicity, as well as potential effects on pregnancy and child health.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Criança , Feminino , Fluorocarbonos/análise , Humanos , Lactente , North Carolina , Placenta/química , Gravidez , Gravidez de Alto Risco , Fatores de RiscoRESUMO
Perfluorooctane sulfonate (PFOS) is a legacy contaminant that has been detected globally within the environment and throughout numerous species, including humans. Despite an international ban on its use, this unique contaminant continues to persist in organisms and their surroundings due to PFOS's inability to breakdown into nontoxic forms resulting in bioaccumulation. In this study, we analyzed the effects of a technical mixture of PFOS (linear and branched isomers) in the adult Eastern oyster, Crassostrea virginica, at 2 days and 7 days exposure. Biomarker analysis (lysosomal destabilization, lipid peroxidation, and glutathione assays) in oyster tissue along with chemical analysis (liquid chromatography tandem mass spectrometry) of PFOS in oyster tissue and water samples revealed the oysters' ability to overcome exposures without significant damage to lipid membranes or the glutathione phase II enzyme system; however, significant cellular lysosomal damage was observed. The oysters were able to eliminate up to 96% of PFOS at 0.3 mg/L and 3 mg/L exposures when allowed to depurate for 2 days in clean seawater. Chemical analysis showed the linear isomer to be the prevailing fraction of the residual PFOS contained in oyster tissue. Results provide insight into possible detrimental cellular effects of PFOS exposure in addition to offering insight into contaminant persistence in oyster tissue.
Assuntos
Ácidos Alcanossulfônicos/toxicidade , Crassostrea/efeitos dos fármacos , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidade , Adulto , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/metabolismo , Animais , Biomarcadores/metabolismo , Crassostrea/metabolismo , Fluorocarbonos/análise , Fluorocarbonos/metabolismo , Humanos , Isomerismo , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Teóricos , Alimentos Marinhos/análise , Água do Mar/química , South Carolina , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismoRESUMO
Perfluorinated alkyl acids (PFAAs) are persistent in marine biota and are toxic to many species, including marine mammals. We measured the concentrations of 15 PFAAs in liver and kidney samples of 16 species of stranded cetaceans from Hawai'i and other tropical North Pacific regions utilizing high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eleven PFAAs in liver and nine PFAAs in kidney were detected, including substantial perfluorooctanesulfonate (PFOS) and perfluoroundecanoic acid (PFUnA). Regression models indicated that phylogenetic family and age class significantly influenced concentrations of certain PFAAs. PFAAs can activate transcription factor peroxisome proliferator-activated receptor alpha (PPARα), which induces transcription of cytochrome P450 4A (CYP4A). Relative expression of PPARα and CYP4A mRNA was quantified using real-time PCR (qPCR) and CYP4A protein expression, using Western blot and then compared to PFAA concentrations in liver and kidney. Concentrations of four PFAA congeners, summation of perfluoroalkyl carboxylic acids (ΣPFCAs), and ΣPFAAs correlated significantly with PPARα mRNA expression and CYP4A protein expression in kidney, suggesting either may be biomarkers of PFAA exposure in cetaceans. This is the first study to quantify PFAAs in marine mammals from this region and the first observation of a direct relationship between PFAA exposure and PPARα and CYP4A expression in cetaceans.
Assuntos
Fluorocarbonos , PPAR alfa , Animais , Biomarcadores , Cromatografia Líquida , Citocromo P-450 CYP4A , Havaí , Filogenia , Espectrometria de Massas em TandemRESUMO
Environmental contamination resulting from the production or release of harmful chemicals can lead to negative consequences for wildlife and human health. Perfluorinated alkyl acids (PFAAs) were historically produced as protective coatings for many household items and currently persist in the environment, wildlife, and humans. PFAAs have been linked to immune suppression, endocrine disruption, and developmental toxicity in wildlife and laboratory studies. This study examines the American alligator, Alligator mississippiensis, as an important indicator of ecosystem contamination and a potential pathway for PFAA exposure in humans. Alligator meat harvested in the 2015 South Carolina (SC) public hunt season and prepared for human consumption was collected and analyzed for PFAAs to determine meat concentrations and relationships with animal body size (total length), sex, and location of harvest. Of the 15 PFAAs analyzed, perfluorooctane sulfonate (PFOS) was found in all alligator meat samples and at the highest concentrations (median 6.73ng/g). No relationship was found between PFAA concentrations and total length or sex. Concentrations of one or all compounds varied significantly across sampling locations, with alligators harvested in the Middle Coastal hunt unit having the highest PFOS concentrations (median 16.0ng/g; p=0.0001). Alligators harvested specifically from Berkley County, SC (located in the Middle Coastal hunt unit) had the highest PFOS concentrations and the greatest number of PFAAs detected (p<0.0001). The site-specific nature of PFAA concentrations in alligator meat observed in this study suggests a source of PFAA contamination in Berkley County, SC.
Assuntos
Jacarés e Crocodilos/metabolismo , Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Fluorocarbonos/metabolismo , Ácidos Alcanossulfônicos/metabolismo , Animais , Disruptores Endócrinos/metabolismo , South CarolinaRESUMO
Exposure to perfluorinated alkyl acids (PFAAs) has been linked to many harmful health effects including reproductive disorders, developmental delays, and altered liver and kidney function. Most human exposure to environmental contaminants, including PFAAs, occurs through consumption of contaminated food or drinking water. This study uses PFAA data from meat samples collected from recreationally harvested American alligators (Alligator mississippiensis) in South Carolina to assess potential dietary exposure of hunters and their families to PFAAs. Consumption patterns were investigated using intercept surveys of 23 hunters at a wild game meat processor. An exposure scenario using the average consumption frequency, portion size, and median perfluorooctane sulfonic acid (PFOS) concentration in alligator meat from all hunt units found the daily dietary exposure to be 2.11ng/kg body weight per day for an adult human. Dietary PFOS exposure scenarios based on location of harvest suggested the highest daily exposure occurs with alligator meat from the Middle Coastal hunt unit in South Carolina. Although no samples were found to exceed the recommended threshold for no consumption of PFOS found in Minnesota state guidelines, exposure to a mixture of PFAAs found in alligator meat and site-specific exposures based on harvest location should be considered in determining an appropriate guideline for vulnerable populations potentially exposed to PFAAs through consumption of wild alligator meat.
Assuntos
Jacarés e Crocodilos/metabolismo , Exposição Dietética/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Fluorocarbonos/metabolismo , Carne/análise , Ácidos Alcanossulfônicos/metabolismo , Animais , Monitoramento Ambiental , Contaminação de Alimentos/análise , Humanos , South CarolinaRESUMO
This study examined concentrations of 15 perfluoroalkyl acids (PFAAs) in tissues from male Mozambique tilapia (Oreochromis mossambicus) collected at Loskop Dam, Mpumalanga, South Africa in 2014 and 2016. Nine of the 15 PFAAs were detected frequently and were included in statistical analysis and included two of the most commonly known PFAAs, perfluorooctanesulfonic acid (PFOS) (median, 41.6ng/g) and perfluorooctanoic acid (PFOA) (median, 0.0825ng/g). Of the tissues measured, plasma (2016 and 2014 median, 22.2ng/g) contained the highest PFAA burden followed by (in descending order): liver (median, 11.6ng/g), kidney (median, 9.04ng/g), spleen (median, 5.92ng/g), adipose (median, 2.54ng/g), and muscle (median, 1.11ng/g). Loskop Dam tilapia have been affected by an inflammatory disease of the adipose tissue known as pansteatitis, so this study also aimed to investigate relationships between PFAA tissue concentrations and incidence of pansteatitis or fish health status. Results revealed that healthy tilapia exhibited an overall higher (p-value<0.05) PFAA burden than pansteatitis-affected tilapia across all tissues. Further analysis showed that organs previously noted in the literature to contain the highest PFAA concentrations, such as kidney, liver, and plasma, were the organs driving the difference in PFAA burden between the two tilapia groups. Care must be taken in the interpretations we draw from not only the results of our study, but also other PFAA measurements made on populations (human and wildlife alike) under differing health status.
Assuntos
Monitoramento Ambiental , Fluorocarbonos/metabolismo , Tilápia/fisiologia , Poluentes Químicos da Água/metabolismo , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/metabolismo , Animais , Caprilatos/análise , Caprilatos/metabolismo , Fluorocarbonos/análise , África do Sul , Distribuição Tecidual , Poluentes Químicos da Água/análiseRESUMO
Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely important since many consumer products have been treated with different PFAS, and people spend much of their lives indoors. Herein, domestic cats were used as sentinels to investigate potential exposure and health linkages. PFAS in serum samples of 72 pet and feral cats, including 11 healthy and 61 with one or more primary disease diagnoses, were quantitated using high-resolution time-of-flight mass spectroscopy. All but one sample had detectable PFAS, with PFOS and perfluorohexane sulfonate (PFHxS) ranging from Assuntos
Ácidos Alcanossulfônicos/sangue
, Caprilatos/sangue
, Gatos
, Monitoramento Ambiental/métodos
, Fluorocarbonos/sangue
, Animais
, Doenças do Gato/sangue
, Habitação
, Obesidade/sangue
, Animais de Estimação/sangue
RESUMO
During native subsistence hunts from 1987 to 2007, blubber and liver samples from 50 subadult male northern fur seals (Callorhinus ursinus) were collected on St. Paul Island, Alaska. Samples were analyzed for legacy persistent organic pollutants (POPs), recently phased-out/current-use POPs, and vitamins. The legacy POPs measured from blubber samples included polychlorinated biphenyl congeners, DDT (and its metabolites), chlorobenzenes, chlordanes, and mirex. Recently phased-out/current-use POPs included in the blubber analysis were the flame retardants, polybrominated diphenyl ethers, and hexabromocyclododecanes. The chemical surfactants, perfluorinated alkyl acids, and vitamins A and E were assessed in the liver samples. Overall, concentrations of legacy POPs are similar to levels seen in seal samples from other areas of the North Pacific Ocean and the Bering Sea. Statistically significant correlations were seen between compounds with similar functions (pesticides, flame retardants, vitamins). With sample collection spanning two decades, the temporal trends in the concentrations of POPs and vitamins were assessed. For these animals, the concentrations of the legacy POPs tend to decrease or stay the same with sampling year; however, the concentrations of the current-use POPs increased with sampling year. Vitamin concentrations tended to stay the same across the sampling years. With the population of northern fur seals from St. Paul Island on the decline, a detailed assessment of exposure to contaminants and the correlations with vitamins fills a critical gap for identifying potential population risk factors that might be associated with health effects.
Assuntos
Otárias/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Vitaminas/metabolismo , Poluentes Químicos da Água/metabolismo , Tecido Adiposo/metabolismo , Alaska , Animais , Éteres Difenil Halogenados/metabolismo , Bifenilos Policlorados/metabolismo , Vitamina ARESUMO
The National Institute of Standards and Technology (NIST) has a wide range of Standard Reference Materials (SRMs) which have values assigned for legacy organic pollutants and toxic elements. Existing SRMs serve as homogenous materials that can be used for method development, method validation, and measurement for contaminants that are now of concern. NIST and multiple groups have been measuring the mass fraction of a group of emerging contaminants, polyfluorinated substances (PFASs), in a variety of SRMs. Here we report levels determined in an interlaboratory comparison of up to 23 PFASs determined in five SRMs: sediment (SRMs 1941b and 1944), house dust (SRM 2585), soil (SRM 2586), and sludge (SRM 2781). Measurements presented show an array of PFASs, with perfluorooctane sulfonate being the most frequently detected. SRMs 1941b, 1944, and 2586 had relatively low concentrations of most PFASs measured while 23 PFASs were at detectable levels in SRM 2585 and most of the PFASs measured were at detectable levels in SRM 2781. The measurements made in this study were used to add values to the Certificates of Analysis for SRMs 2585 and 2781.
Assuntos
Monitoramento Ambiental/normas , Poluentes Ambientais/normas , Hidrocarbonetos Fluorados/normas , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/normas , Poeira/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Fluorocarbonos/análise , Fluorocarbonos/normas , Sedimentos Geológicos/análise , Hidrocarbonetos Fluorados/análise , Padrões de Referência , Poluentes do Solo/análiseRESUMO
The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.
Assuntos
Ácidos/química , Aerossóis/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos/química , Atmosfera , Peso MolecularRESUMO
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants originating from many everyday products. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are two PFAS that are commonly found at high concentrations in aquatic environments. Both chemicals have previously been shown to be toxic to fish, as well as having complex and largely uncharacterized mixture effects. However, limited information is available on marine and estuarine species. In this study, embryonic and larval sheepshead minnows (Cyprinodon variegatus) were exposed to several PFAS mixtures to assess lethal and sublethal effects. PFOS alone was acutely toxic to larvae, with a 96 h LC50 of 1.97 mg/L (1.64-2.16). PFOS + PFOA resulted in a larval LC50 of 3.10 (2.62-3.79) mg/L, suggesting an antagonistic effect. These observations were supported by significant reductions in malondialdehyde (105% ± 3.25) and increases in reduced glutathione concentrations (43.8% ± 1.78) in PFOS + PFOA exposures compared to PFOS-only treatments, indicating reduced oxidative stress. While PFOA reduced PFOS-induced mortality (97.0% ± 3.03), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) did not. PFOS alone did not affect expression of peroxisome proliferator-activated receptor alpha (pparα) but significantly upregulated apolipoprotein A4 (apoa4) (112.4% ± 17.8), a downstream product of pparα, while none of the other individually tested PFAS affected apoa4 expression. These findings suggest that there are antagonistic interactions between PFOA and PFOS that may reduce mixture toxicity in larval sheepshead minnows through reduced oxidative stress. Elucidating mechanisms of toxicity and interactions between PFAS will aid environmental regulation and management of these ubiquitous pollutants.
RESUMO
The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health (NIH), has developed a Standard Reference Material (SRM) to support technology development in metabolomics research. SRM 1950 Metabolites in Human Plasma is intended to have metabolite concentrations that are representative of those found in adult human plasma. The plasma used in the preparation of SRM 1950 was collected from both male and female donors, and donor ethnicity targets were selected based upon the ethnic makeup of the U.S. population. Metabolomics research is diverse in terms of both instrumentation and scientific goals. This SRM was designed to apply broadly to the field, not toward specific applications. Therefore, concentrations of approximately 100 analytes, including amino acids, fatty acids, trace elements, vitamins, hormones, selenoproteins, clinical markers, and perfluorinated compounds (PFCs), were determined. Value assignment measurements were performed by NIST and the Centers for Disease Control and Prevention (CDC). SRM 1950 is the first reference material developed specifically for metabolomics research.
Assuntos
Análise Química do Sangue/normas , Metabolômica/normas , Adulto , Aminoácidos/sangue , Biomarcadores/sangue , Carotenoides/sangue , Ácidos Graxos/sangue , Feminino , Humanos , Masculino , National Institutes of Health (U.S.) , Padrões de Referência , Estados Unidos , Vitaminas/sangueRESUMO
Standard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned for legacy pollutants. These SRMs can also serve as test materials for method development, method validation, and measurement for contaminants of emerging concern. Because inter-laboratory comparison studies have revealed substantial variability of measurements of perfluoroalkyl acids (PFAAs), future analytical measurements will benefit from determination of consensus values for PFAAs in SRMs to provide a means to demonstrate method-specific performance. To that end, NIST, in collaboration with other groups, has been measuring concentrations of PFAAs in a variety of SRMs. Here we report levels of PFAAs and perfluorooctane sulfonamide (PFOSA) determined in four biological SRMs: fish tissue (SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue), bovine liver (SRM 1577c), and mussel tissue (SRM 2974a). We also report concentrations for three in-house quality-control materials: beluga whale liver, pygmy sperm whale liver, and white-sided dolphin liver. Measurements in SRMs show an array of PFAAs, with perfluorooctane sulfonate (PFOS) being the most frequently detected. Reference and information values are reported for PFAAs measured in these biological SRMs.
Assuntos
Ácidos Carboxílicos/análise , Monitoramento Ambiental/normas , Poluentes Ambientais/análise , Fluorocarbonos/análise , Sulfonamidas/análise , Animais , Bivalves/metabolismo , Bovinos , Monitoramento Ambiental/métodos , Peixes/metabolismo , Fígado/metabolismo , Padrões de ReferênciaRESUMO
Per- and polyfluoroalkyl substances (PFAS) accumulation and elimination in both wildlife and humans is largely attributed to PFAS interactions with proteins, including but not limited to organic anion transporters (OATs), fatty acid binding proteins (FABPs), and serum proteins such as albumin. In wildlife, changes in the biotic and abiotic environment (e.g. salinity, temperature, reproductive stage, and health status) often lead to dynamic and responsive physiological changes that alter the prevalence and location of many proteins, including PFAS-related proteins. Therefore, we hypothesize that if key PFAS-related proteins are impacted as a result of environmentally induced as well as biologically programmed physiological changes (e.g. reproduction), then PFAS that associate with those proteins will also be impacted. Changes in tissue distribution across tissues of PFAS due to these dynamics may have implications for wildlife studies where these chemicals are measured in biological matrices (e.g., serum, feathers, eggs). For example, failure to account for factors contributing to PFAS variability in a tissue may result in exposure misclassification as measured concentrations may not reflect average exposure levels. The goal of this review is to share general information with the PFAS research community on what biotic and abiotic changes might be important to consider when designing and interpreting a biomonitoring or an ecotoxicity based wildlife study. This review will also draw on parallels from the epidemiological discipline to improve study design in wildlife research. Overall, understanding these connections between biotic and abiotic environments, dynamic protein levels, PFAS levels measured in wildlife, and epidemiology serves to strengthen study design and study interpretation and thus strengthen conclusions derived from wildlife studies for years to come.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Animais Selvagens , Monitoramento Biológico , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Humanos , ReproduçãoRESUMO
Contamination status and characteristics of perfluorinated alkyl acids (PFAAs) including perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs) was examined using liver tissue of birds - black-tailed gulls (Larus crassirostris), domestic pigeons (Columba livia var. domestica), pacific loons (Gavia pacifica), herons (Ardea cinerea), and egrets (Egretta garzetta and Ardea alba) - with different trophic levels, habitat types and migratory behaviors from an industrialized coastal region of South Korea. A wide range of PFAAs (1.09 ng/g to 1060 ng/g; median = 52.6 ng/g) were detected in bird livers from the Korean coasts with high detection frequency. Accumulation features of PFAAs in birds indicated that primarily trophic position and secondly habitat type influence the levels and composition of PFAAs, e.g., relatively high PFAA levels and high composition of odd-numbered long carbon chain PFCAs (perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTriDA)) and PFOS in higher trophic and marine birds. The prevalence of long carbon chain (≥14) PFCAs likely implies a wide use of fluorotelomer-based substances in Korea. Interspecies comparison in the accumulation profile of persistent organic pollutants (including polychlorinated biphenyls (PCBs), organochlorine pesticides, polybrominated diphenylethers (PBDEs), and PFAAs) reveals relatively high load of PFAAs in inland (pigeons) and estuarine (egrets/herons) species compared to marine bird species, indicating wide use of PFAAs in the terrestrial environment.
Assuntos
Poluentes Ambientais , Fluorocarbonos , Animais , Columbidae , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Fígado/químicaRESUMO
Wildlife from remote locations have been shown to bioaccumulate perfluorinated compounds (PFCs) in their tissues. Twelve PFCs, consisting of perfluorinated carboxylic (PFCA) and sulfonic (PFSA) acids as well as the perfluorooctane sulfonate (PFOS) precursor perfluorooctane sulfonamide (PFOSA), were measured in livers of 68 beluga whales (Delphinapterus leucas) collected from two subpopulations, Cook Inlet and eastern Chukchi Sea, in Alaska between 1989 and 2006. PFOS and PFOSA were the dominant compounds measured in both beluga stock populations, with overall median concentrations of 10.8 ng/g and 22.8 ng/g, respectively. Long-chain perfluorocarboxylates, PFCAs (9 to 14 carbons), were detected in more than 80% of the samples. Perfluoroundecanoic acid (PFUnA) and perfluorotridecanoic acid (PFTriA) made up a large percentage of the PFCAs measured with median concentrations of 8.49 ng/g and 4.38 ng/g, respectively. To compare differences in location, year, sex, and length, backward stepwise multiple regression models of the individual and total PFC concentrations were used. Spatially, the Cook Inlet belugas had higher concentrations of most PFCAs and PFOS (p < 0.05); however, these belugas had a lower median concentration of PFOSA when compared to belugas from the eastern Chukchi Sea (p < 0.05). Temporal trends indicated most PFCAs, PFHxS, PFOS, and PFOSA concentrations increased from 1989 to 2006 (p < 0.05). Males had significantly higher concentrations of PFTriA, ΣPFCA, and PFOS (p < 0.05). Perfluorononanic acid (PFNA) and PFOS showed a significant decrease in concentration with increasing animal length (p < 0.05). These observations suggest the accumulation of PFCs in belugas is influenced by year, location, sex, and length.
Assuntos
Beluga/metabolismo , Monitoramento Ambiental , Fluorocarbonos/metabolismo , Alaska , Ácidos Alcanossulfônicos/metabolismo , Animais , Regiões Árticas , Feminino , Feto/metabolismo , Modelos Lineares , Fígado/metabolismo , Fatores de TempoRESUMO
Perfluorinated compounds (PFCs) were measured in three National Institute of Standards and Technology (NIST) Standard Reference Materials (SRMs) (SRMs 1950 Metabolites in Human Plasma, SRM 1957 Organic Contaminants in Non-fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum) using two analytical approaches. The methods offer some independence, with two extraction types and two liquid chromatographic separation methods. The first extraction method investigated the acidification of the sample followed by solid-phase extraction (SPE) using a weak anion exchange cartridge. The second method used an acetonitrile extraction followed by SPE using a graphitized non-porous carbon cartridge. The extracts were separated using a reversed-phase C(8) stationary phase and a pentafluorophenyl (PFP) stationary phase. Measured values from both methods for the two human serum SRMs, 1957 and 1958, agreed with reference values on the Certificates of Analysis. Perfluorooctane sulfonate (PFOS) values were obtained for the first time in human plasma SRM 1950 with good reproducibility among the methods (below 5% relative standard deviation). The nominal mass interference from taurodeoxycholic acid, which has caused over estimation of the amount of PFOS in biological samples, was separated from PFOS using the PFP stationary phase. Other PFCs were also detected in SRM 1950 and are reported. SRM 1950 can be used as a control material for human biomonitoring studies and as an aid to develop new measurement methods.
Assuntos
Ácidos Alcanossulfônicos/sangue , Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/métodos , Fluoretos/sangue , Fluorocarbonos/sangue , Soro/química , Extração em Fase Sólida/métodos , Artefatos , Humanos , Padrões de Referência , Valores de Referência , Reprodutibilidade dos Testes , Ácido Taurodesoxicólico/sangueRESUMO
Due to the mounting evidence that phthalates, specifically di-2-ethylhexyl phthalate and dibutyl phthalate, produce adverse endocrine effects in humans and wildlife, the use of other chemicals as replacements has increased. One of the most commonly encountered phthalate replacements is di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH). Currently, little is known about the prevalence of human exposure, bioactivity, and endocrine disrupting potential of DINCH. We sampled urine from 100 pregnant women during the second trimester of pregnancy living in Charleston, SC between 2011 and 2014 and measured the following DINCH metabolites by LC-MS/MS: cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester (OH-MINCH), cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester (oxo-MINCH), and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (cx-MINCH). These metabolites were also tested on human estrogen receptor alpha and progesterone receptor beta transactivation assays in vitro. OH-MINCH was detected in 98% of urine samples. The specific gravity-adjusted median (interquartile range) OH-MINCH concentration was 0.20 (0.25) ng/mL, and concentrations were significantly higher in African American women compared to Caucasian women (p = 0.01). DINCH metabolite concentrations were consistent between years, and they did not exhibit estrogenic or progestogenic activity in vitro. Human exposure to these emerging compounds should continue to be monitored, especially in vulnerable populations, to ensure the replacement of phthalates by DINCH is not a case of regrettable substitution.