Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37836272

RESUMO

Nanomaterials have a long history, and people have utilized them unknowingly [...].

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839133

RESUMO

The development of sustainable, safe, low-cost, high energy and density power-density energy storage devices is most needed to electrify our modern needs to reach a carbon-neutral society by ~2050. Batteries are the backbones of future sustainable energy sources for both stationary off-grid and mobile plug-in electric vehicle applications. Biomass-derived carbon materials are extensively researched as efficient and sustainable electrode/anode candidates for lithium/sodium-ion chemistries due to their well-developed tailored textures (closed pores and defects) and large microcrystalline interlayer spacing and therefore opens-up their potential applications in sustainable potassium and aluminum batteries. The main purpose of this perspective is to brief the use of biomass residues for the preparation of carbon electrodes for potassium and aluminum batteries annexed to the biomass-derived carbon physicochemical structures and their aligned electrochemical properties. In addition, we presented an outlook as well as some challenges faced in this promising area of research. We believe that this review enlightens the readers with useful insights and a reasonable understanding of issues and challenges faced in the preparation, physicochemical properties and application of biomass-derived carbon materials as anodes and cathode candidates for potassium and aluminum batteries, respectively. In addition, this review can further help material scientists to seek out novel electrode materials from different types of biomasses, which opens up new avenues in the fabrication/development of next-generation sustainable and high-energy density batteries.

3.
Materials (Basel) ; 14(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808328

RESUMO

A literature review comprising 163 publications published over a period of 26 years from 1992 to 2018 is presented in this paper. This review discusses the generation and recycling of construction and demolition waste (CDW) as well as its main uses as raw materials for the construction engineering sector. This review pays attention to the use of CDW aggregates for sand, pavements/roads, bricks, ceramics, cementitious materials, and concrete productions, as well its uses as eco-friendly materials for water decontamination. The physical-chemical and mechanical characteristics of recycled aggregates play an important role in their correctly chosen applications. The results found in this literature survey allow us to conclude that recycled aggregates from CDW can be successfully used to produce construction materials with quality comparable to those produced with natural aggregates. We concluded that the use of CDWs as raw materials for manufacturing new construction materials is technically feasible, economical, and constitutes an environmentally friendly approach for a future construction and demolition waste management strategy.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562379

RESUMO

Cheap and efficient carbon electrodes (CEs) for energy storage systems (ESS) such as supercapacitors (SCs) and batteries are an increasing priority issue, among other things, due to a globally increasing share of intermittent electricity production (solar and wind) and electrification of transport. The increasing consumption of portable and non-portable electronic devices justifies research that enables environmentally and economically sustainable production (materials, processing techniques, and product design) of products with a high electrochemical performance at an acceptable cost. Among all the currently explored CEs materials, biomass-based activated carbons (AC) present enormous potential due to their availability and low-cost, easy processing methods, physicochemical stability, and methods for self-doping. Nitrogen doping methods in CEs for SCs have been demonstrated to enhance its conductivities, surface wettability, and induced pseudocapacitance effect, thereby delivering improved energy/power densities with versatile properties. Herein, a short review is presented, focusing on the different types of natural carbon sources for preparing CEs towards the fabrication of SCs with high electrochemical performance. The influences of ACs' pore characteristics (micro and mesoporosity) and nitrogen doping on the overall electrochemical performance (EP) are addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA