Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
N Engl J Med ; 388(2): 128-141, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516086

RESUMO

BACKGROUND: The late-onset cerebellar ataxias (LOCAs) have largely resisted molecular diagnosis. METHODS: We sequenced the genomes of six persons with autosomal dominant LOCA who were members of three French Canadian families and identified a candidate pathogenic repeat expansion. We then tested for association between the repeat expansion and disease in two independent case-control series - one French Canadian (66 patients and 209 controls) and the other German (228 patients and 199 controls). We also genotyped the repeat in 20 Australian and 31 Indian index patients. We assayed gene and protein expression in two postmortem cerebellum specimens and two induced pluripotent stem-cell (iPSC)-derived motor-neuron cell lines. RESULTS: In the six French Canadian patients, we identified a GAA repeat expansion deep in the first intron of FGF14, which encodes fibroblast growth factor 14. Cosegregation of the repeat expansion with disease in the families supported a pathogenic threshold of at least 250 GAA repeats ([GAA]≥250). There was significant association between FGF14 (GAA)≥250 expansions and LOCA in the French Canadian series (odds ratio, 105.60; 95% confidence interval [CI], 31.09 to 334.20; P<0.001) and in the German series (odds ratio, 8.76; 95% CI, 3.45 to 20.84; P<0.001). The repeat expansion was present in 61%, 18%, 15%, and 10% of French Canadian, German, Australian, and Indian index patients, respectively. In total, we identified 128 patients with LOCA who carried an FGF14 (GAA)≥250 expansion. Postmortem cerebellum specimens and iPSC-derived motor neurons from patients showed reduced expression of FGF14 RNA and protein. CONCLUSIONS: A dominantly inherited deep intronic GAA repeat expansion in FGF14 was found to be associated with LOCA. (Funded by Fondation Groupe Monaco and others.).


Assuntos
Ataxia Cerebelar , Expansão das Repetições de DNA , Íntrons , Humanos , Austrália , Canadá , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Íntrons/genética , Expansão das Repetições de DNA/genética
2.
J Med Genet ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937076

RESUMO

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

3.
Ann Neurol ; 94(3): 470-485, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243847

RESUMO

OBJECTIVE: The Scale for the Assessment and Rating of Ataxia (SARA) is the most widely applied clinical outcome assessment (COA) for genetic ataxias, but presents metrological and regulatory challenges. To facilitate trial planning, we characterize its responsiveness (including subitem-level relations to ataxia severity and patient-focused outcomes) across a large number of ataxias, and provide first natural history data for several of them. METHODS: Subitem-level correlation and distribution-based analysis of 1,637 SARA assessments in 884 patients with autosomal recessive/early onset ataxia (370 with 2-8 longitudinal assessments) were complemented by linear mixed effects modeling to estimate progression and sample sizes. RESULTS: Although SARA subitem responsiveness varied between ataxia severities, gait/stance showed a robust granular linear scaling across the broadest range (SARA < 25). Responsiveness was diminished by incomplete subscale use at intermediate or upper levels, nontransitions ("static periods"), and fluctuating decreases/increases. All subitems except nose-finger showed moderate-to-strong correlations to activities of daily living, indicating that metric properties-not content validity-limit SARA responsiveness. SARA captured mild-to-moderate progression in many genotypes (eg, SYNE1-ataxia: 0.55 points/yr, ataxia with oculomotor apraxia type 2: 1.14 points/yr, POLG-ataxia: 1.56 points/yr), but no change in others (autosomal recessive spastic ataxia of Charlevoix-Saguenay, COQ8A-ataxia). Whereas sensitivity to change was optimal in mild ataxia (SARA < 10), it substantially deteriorated in advanced ataxia (SARA > 25; 2.7-fold sample size). Use of a novel rank-optimized SARA without subitems finger-chase and nose-finger reduces sample sizes by 20 to 25%. INTERPRETATION: This study comprehensively characterizes COA properties and annualized changes of the SARA across and within a large number of ataxias. It suggests specific approaches for optimizing its responsiveness that might facilitate regulatory qualification and trial design. ANN NEUROL 2023;94:470-485.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Atividades Cotidianas , Ataxia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Extremidade Superior
4.
Clin Genet ; 103(3): 346-351, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36371792

RESUMO

Bi-allelic variants affecting one of the four genes encoding the AP4 subunits are responsible for the "AP4 deficiency syndrome." Core features include hypotonia that progresses to hypertonia and spastic paraplegia, intellectual disability, postnatal microcephaly, epilepsy, and neuroimaging features. Namely, AP4M1 (SPG50) is involved in autosomal recessive spastic paraplegia 50 (MIM#612936). We report on three patients with core features from three unrelated consanguineous families originating from the Middle East. Exome sequencing identified the same homozygous nonsense variant: NM_004722.4(AP4M1):c.1012C>T p.Arg338* (rs146262009). So far, four patients from three other families carrying this homozygous variant have been reported worldwide. We describe their phenotype and compare it to the phenotype of patients with other variants in AP4M1. We construct a shared single-nucleotide polymorphism (SNP) haplotype around AP4M1 in four families and suggest a probable founder effect of Arg338* AP4M1 variant with a common ancestor most likely of Turkish origin.


Assuntos
Epilepsia , Deficiência Intelectual , Paraplegia Espástica Hereditária , Humanos , Deficiência Intelectual/genética , Mutação/genética , Efeito Fundador , Paraplegia/genética , Paraplegia Espástica Hereditária/genética , Epilepsia/genética , Linhagem , Fenótipo
5.
Mov Disord ; 38(10): 1950-1956, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37470282

RESUMO

BACKGROUND: Heterozygous GAA expansions in the FGF14 gene have been related to autosomal dominant cerebellar ataxia (SCA27B-MIM:620174). Whether they represent a common cause of sporadic late-onset cerebellar ataxia (SLOCA) remains to be established. OBJECTIVES: To estimate the prevalence, characterize the phenotypic spectrum, identify discriminative features, and model longitudinal progression of SCA27B in a prospective cohort of SLOCA patients. METHODS: FGF14 expansions screening combined with longitudinal deep-phenotyping in a prospective cohort of 118 SLOCA patients (onset >40 years of age, no family history of cerebellar ataxia) without a definite diagnosis. RESULTS: Prevalence of SCA27B was 12.7% (15/118). Higher age of onset, higher Spinocerebellar Degeneration Functional Score, presence of vertigo, diplopia, nystagmus, orthostatic hypotension absence, and sensorimotor neuropathy were significantly associated with SCA27B. Ataxia progression was ≈0.4 points per year on the Scale for Assessment and Rating of Ataxia. CONCLUSIONS: FGF14 expansion is a major cause of SLOCA. Our natural history data will inform future FGF14 clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Ataxia/complicações , Ataxia Cerebelar/epidemiologia , Ataxia Cerebelar/genética , Ataxia Cerebelar/complicações , Estudos Prospectivos , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/epidemiologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/complicações
6.
Mov Disord ; 38(11): 2103-2115, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605305

RESUMO

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by mutations in the C19orf12 gene. MPAN typically appears in the first two decades of life and presents with progressive dystonia-parkinsonism, lower motor neuron signs, optic atrophy, and abnormal iron deposits predominantly in the basal ganglia. MPAN, initially considered as a strictly autosomal recessive disease (AR), turned out to be also dominantly inherited (AD). OBJECTIVES: Our aim was to better characterize the clinical, molecular, and functional spectra associated with such dominant pathogenic heterozygous C19orf12 variants. METHODS: We collected clinical, imaging, and molecular information of eight individuals from four AD-MPAN families and obtained brain neuropathology results for one. Functional studies, focused on energy and iron metabolism, were conducted on fibroblasts from AD-MPAN patients, AR-MPAN patients, and controls. RESULTS: We identified four heterozygous C19orf12 variants in eight AD-MPAN patients. Two of them carrying the familial variant in mosaic displayed an atypical late-onset phenotype. Fibroblasts from AD-MPAN showed more severe alterations of iron storage metabolism and autophagy compared to AR-MPAN cells. CONCLUSION: Our data add strong evidence of the realness of AD-MPAN with identification of novel monoallelic C19orf12 variants, including at the mosaic state. This has implications in diagnosis procedures. We also expand the phenotypic spectrum of MPAN to late onset atypical presentations. Finally, we demonstrate for the first time more drastic abnormalities of iron metabolism and autophagy in AD-MPAN than in AR-MPAN. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Mosaicismo , Transtornos dos Movimentos , Humanos , Proteínas Mitocondriais/genética , Ferro/metabolismo , Mutação/genética , Proteínas de Membrana/genética , Fenótipo
7.
Brain ; 145(11): 3770-3775, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883251

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Proteína de Replicação C , Humanos , Vestibulopatia Bilateral/complicações , Ataxia Cerebelar/genética , Doenças do Sistema Nervoso Periférico/complicações , Doenças do Sistema Nervoso Periférico/genética , Reflexo Anormal , RNA Mensageiro/genética , Síndrome , Proteína de Replicação C/genética
8.
Neurogenetics ; 23(4): 241-255, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788923

RESUMO

ATL1-related spastic paraplegia SPG3A is a pure form of hereditary spastic paraplegia. Rare complex phenotypes have been described, but few data concerning cognitive evaluation or molecular imaging of these patients are available. We relate a retrospective collection of patients with SPG3A from the Neurology Department of Nancy University Hospital, France. For each patient were carried out a 18F-FDG PET (positron emission tomography), a electromyography (EMG), a sudoscan®, a cerebral and spinal cord MRI (magnetic resonance imaging) with measurement of cervical and thoracic surfaces, a neuropsychological assessment. The present report outlines standardised clinical and paraclinical data of five patients from two east-France families carrying the same missense pathogenic variation, NM_015915.4(ATL1): c.1483C > T p.(Arg495Trp) in ATL1. Mean age at onset was 14 ± 15.01 years. Semi-quantitatively and in comparison to healthy age-matched subjects, PET scans showed a significant cerebellar and upper or mild temporal hypometabolism in all four adult patients and hypometabolism of the prefrontal cortex or precuneus in three of them. Sudoscan® showed signs of small fibre neuropathy in three patients. Cervical and thoracic patients' spinal cords were significantly thinner than matched-control, respectively 71 ± 6.59mm2 (p = 0.01) and 35.64 ± 4.35mm2 (p = 0.015). Two patients presented with a dysexecutive syndrome. While adding new clinical and paraclinical signs associated with ATL1 pathogenic variations, we insist here on the variable penetrance and expressivity. We report small fibre neuropathy, cerebellar hypometabolism and dysexecutive syndromes associated with SPG3A. These cognitive impairments and PET findings may be related to a cortico-cerebellar bundle axonopathy described in the cerebellar cognitive affective syndrome (CCAS).


Assuntos
Neuropatia de Pequenas Fibras , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Fluordesoxiglucose F18 , Análise Mutacional de DNA , Penetrância , Estudos Retrospectivos , Linhagem , Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/genética , Mutação , Fenótipo , Encéfalo/diagnóstico por imagem
9.
Am J Med Genet A ; 188(11): 3343-3349, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35972031

RESUMO

Cutis laxa (CL) is a rare connective tissue disorder characterized by wrinkled, abundant and sagging skin, sometimes associated with systemic impairment. Biallelic alterations in latent transforming growth factor beta-binding protein 4 gene (LTBP4) cause autosomal recessive type 1C cutis laxa (ARCL1C, MIM #613177). The present report describes the case of a 17-months-old girl with cutis laxa together with a literature review of previous ARCL1C cases. Based on proband main clinical signs (cutis laxa and pulmonary emphysema), clinical exome sequencing (CES) was performed and showed a new nine base-pairs homozygous in-frame deletion in LTBP4 gene. RT-PCR and cDNA Sanger sequencing were performed in order to clarify its impact on RNA. This report demonstrates that a genetic alteration in the EGF-like 14 domain calcium-binding motif of LTBP4 gene is likely responsible for cutis laxa in our patient.


Assuntos
Cútis Laxa , Cálcio , Doenças das Cartilagens , Cútis Laxa/genética , DNA Complementar , Fator de Crescimento Epidérmico , Feminino , Gastroenteropatias , Humanos , Lactente , Proteínas de Ligação a TGF-beta Latente/genética , RNA , Doenças Respiratórias , Fator de Crescimento Transformador beta , Doenças Urológicas
10.
Genet Med ; 23(11): 2150-2159, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34345024

RESUMO

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Assuntos
Deficiência Intelectual , Microcefalia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Quinases Dyrk
11.
Genet Med ; 23(11): 2160-2170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34234304

RESUMO

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Assuntos
Ataxia Cerebelar , Genômica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Humanos , Peroxinas , Receptores Citoplasmáticos e Nucleares , Estados Unidos , Sequenciamento do Exoma
12.
Mov Disord ; 35(12): 2139-2149, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33044027

RESUMO

alpha-Fetoprotein (AFP) is a biomarker of several autosomal recessive cerebellar ataxias (ARCAs), especially ataxia telangiectasia (AT) and ataxia with oculomotor apraxia (AOA) type 2 (AOA2). More recently, slightly elevated AFP has been reported in AOA1 and AOA4. Interestingly, AOA1, AOA2, AOA4, and AT are overlapping ARCAs characterized by oculomotor apraxia, with oculocephalic dissociation, choreo-dystonia, and/or axonal sensorimotor neuropathy, in addition to cerebellar ataxia with cerebellar atrophy. The genetic backgrounds in these disorders play central roles in nuclear maintenance through DNA repair [ATM (AT), APTX (AOA1), or PNKP (AOA4)] or RNA termination [SETX (AOA2)]. Partially discriminating thresholds of AFP have been proposed as a way to distinguish between ARCAs with elevated AFP. In these entities, elevated AFP may be an epiphenomenon as a result of liver transcriptional dysregulation. AFP is a simple and reliable biomarker for the diagnosis of ARCA in performance and interpretation of next-generation sequencing. Here, we evaluated clinical, laboratory, imaging, and molecular data of the group of ARCAs that share elevated AFP serum levels that have been described in the past two decades. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Síndrome de Cogan , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Biomarcadores , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , DNA Helicases , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Humanos , Enzimas Multifuncionais , Proteínas Nucleares , Fosfotransferases (Aceptor do Grupo Álcool) , RNA Helicases , alfa-Fetoproteínas
13.
Ann Neurol ; 82(6): 892-899, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29059497

RESUMO

OBJECTIVE: Differential diagnosis of autosomal recessive cerebellar ataxias can be challenging. A ranking algorithm named RADIAL that predicts the molecular diagnosis based on the clinical phenotype of a patient has been developed to guide genetic testing and to align genetic findings with the clinical context. METHODS: An algorithm that follows clinical practice, including patient history, clinical, magnetic resonance imaging, electromyography, and biomarker features, was developed following a review of the literature on 67 autosomal recessive cerebellar ataxias and personal clinical experience. Frequency and specificity of each feature were defined for each autosomal recessive cerebellar ataxia, and corresponding prediction scores were assigned. Clinical and paraclinical features of patients are entered into the algorithm, and a patient's total score for each autosomal recessive cerebellar ataxia is calculated, producing a ranking of possible diagnoses. Sensitivity and specificity of the algorithm were assessed by blinded analysis of a multinational cohort of 834 patients with molecularly confirmed autosomal recessive cerebellar ataxia. The performance of the algorithm was assessed versus a blinded panel of autosomal recessive cerebellar ataxia experts. RESULTS: The correct diagnosis was ranked within the top 3 highest-scoring diagnoses at a sensitivity and specificity of >90% for 84% and 91% of the evaluated genes, respectively. Mean sensitivity and specificity of the top 3 highest-scoring diagnoses were 92% and 95%, respectively. The algorithm outperformed the panel of ataxia experts (p = 0.001). INTERPRETATION: Our algorithm is highly sensitive and specific, accurately predicting the underlying molecular diagnoses of autosomal recessive cerebellar ataxias, thereby guiding targeted sequencing or facilitating interpretation of next-generation sequencing data. Ann Neurol 2017;82:892-899.


Assuntos
Algoritmos , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Criança , Pré-Escolar , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Lactente , Masculino
16.
Hum Mutat ; 37(12): 1340-1353, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27528516

RESUMO

Next-generation sequencing (NGS) has an established diagnostic value for inherited ataxia. However, the need of a rigorous process of analysis and validation remains challenging. Moreover, copy number variations (CNV) or dynamic expansions of repeated sequence are classically considered not adequately detected by exome sequencing technique. We applied a strategy of mini-exome coupled to read-depth based CNV analysis to a series of 33 patients with probable inherited ataxia and onset <50 years. The mini-exome consisted of the capture of 4,813 genes having associated clinical phenotypes. Pathogenic variants were found in 42% and variants of uncertain significance in 24% of the patients. These results are comparable to those from whole exome sequencing and better than previous targeted NGS studies. CNV and dynamic expansions of repeated CAG sequence were identified in three patients. We identified both atypical presentation of known ataxia genes (ATM, NPC1) and mutations in genes very rarely associated with ataxia (ERCC4, HSD17B4). We show that mini-exome bioinformatics data analysis allows the identification of CNV and dynamic expansions of repeated sequence. Our study confirms the diagnostic value of the proposed genetic analysis strategy. We also provide an algorithm for the multidisciplinary process of analysis, interpretation, and validation of NGS data.


Assuntos
Ataxia Cerebelar/genética , Variações do Número de Cópias de DNA , Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idade de Início , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Transporte/genética , Ataxia Cerebelar/etiologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Glicoproteínas de Membrana/genética , Proteína C1 de Niemann-Pick , Proteína Multifuncional do Peroxissomo-2/genética , Adulto Jovem
18.
Mov Disord ; 31(1): 62-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26388117

RESUMO

BACKGROUND: Friedreich's ataxia usually occurs before the age of 25. Rare variants have been described, such as late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, occurring after 25 and 40 years, respectively. We describe the clinical, functional, and molecular findings from a large series of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia and compare them with typical-onset Friedreich's ataxia. METHODS: Phenotypic and genotypic comparison of 44 late-onset Friedreich's ataxia, 30 very late-onset Friedreich's ataxia, and 180 typical Friedreich's ataxia was undertaken. RESULTS: Delayed-onset Friedreich's ataxia (late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia) had less frequently dysarthria, abolished tendon reflexes, extensor plantar reflexes, weakness, amyotrophy, ganglionopathy, cerebellar atrophy, scoliosis, and cardiomyopathy than typical-onset Friedreich's ataxia, along with less severe functional disability and shorter GAA expansion on the smaller allele (P < 0.001). Delayed-onset Friedreich's ataxia had lower scale for the assessment and rating of ataxia and spinocerebellar degeneration functional scores and longer disease duration before wheelchair confinement (P < 0.001). Both GAA expansions were negatively correlated to age at disease onset (P < 0.001), but the smaller GAA expansion accounted for 62.9% of age at onset variation and the larger GAA expansion for 15.6%. In this comparative study of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, no differences between these phenotypes were demonstrated. CONCLUSION: Typical- and delayed-onset Friedreich's ataxia are different and Friedreich's ataxia is heterogeneous. Late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia appear to belong to the same clinical and molecular continuum and should be considered together as "delayed-onset Friedreich's ataxia." As the most frequently inherited ataxia, Friedreich's ataxia should be considered facing compatible pictures, including atypical phenotypes (spastic ataxia, retained reflexes, lack of dysarthria, and lack of extraneurological signs), delayed disease onset (even after 60 years of age), and/or slow disease progression.


Assuntos
Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idade de Início , Idoso , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Criança , Eletrocardiografia , Feminino , Ataxia de Friedreich/sangue , Ataxia de Friedreich/fisiopatologia , Genótipo , Hemoglobinas Glicadas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Cooperação Internacional , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Adulto Jovem
19.
BMC Neurol ; 16(1): 238, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881096

RESUMO

BACKGROUND: Essential tremor (ET) is characterized by a frequent family history. No monogenic form of ET has been identified. We aimed at exploring ET patients to identify distinct subgroups and facilitate the identification of ET genes. We tested for the presence of HTRA2 p.G399S, and ANO3 p. W490C, p. R484 W and p. S685G mutations. METHODS: Between June 2011 and November 2013, all consecutive patients suspected with ET were prospectively included in a prospective, monocentric study. Family history, age at onset (AAO), features of tremor, benefit of alcohol and drugs, electrophysiological recording findings were collected. Sanger sequencing was performed for HTRA2 and ANO3 mutations screening. RESULTS: Sixty eight patients were investigated. Fourteen diagnosed with psychogenic (5) or dystonic tremor (9) were excluded. Regarding the 54 ET patients, mean AAO was 48 years (6-77), and mean disease duration 15 years (1-55). Bimodal distribution of AAO was consistent with phenotypic subgroups. In patients with AAO before 30 years, marked benefit of alcohol (p < 0.01) and ET family history (p < 0.01) were more frequent and the disease progression less severe (p < 0.0001). Neither HTRA2 nor ANO3 mutation were identified in our patients. CONCLUSIONS: Our data support that distinct ET phenotypic subgroups may be encountered. We recommend to study separately extreme phenotypes of ET, particularly autosomal dominant families with early AAO (<30 years) and marked benefit of alcohol, to facilitate the identification of ET genes. Electromyographic recording remains a support to distinguish ET from differential diagnosis. HTRA2 and ANO3 mutations are not common causes of ET.


Assuntos
Distúrbios Distônicos/genética , Tremor Essencial/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Anoctaminas , Canais de Cloreto/genética , Feminino , Estudos de Associação Genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Mutação , Estudos Prospectivos , Serina Endopeptidases/genética , Adulto Jovem
20.
Brain ; 137(Pt 2): 411-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24369382

RESUMO

We previously localized a new form of recessive ataxia with generalized tonic-clonic epilepsy and mental retardation to a 19 Mb interval in 16q21-q23 by homozygosity mapping of a large consanguineous Saudi Arabian family. We now report the identification by whole exome sequencing of the missense mutation changing proline 47 into threonine in the first WW domain of the WW domain containing oxidoreductase gene, WWOX, located in the linkage interval. Proline 47 is a highly conserved residue that is part of the WW motif consensus sequence and is part of the hydrophobic core that stabilizes the WW fold. We demonstrate that proline 47 is a key amino acid essential for maintaining the WWOX protein fully functional, with its mutation into a threonine resulting in a loss of peptide interaction for the first WW domain. We also identified another highly conserved homozygous WWOX mutation changing glycine 372 to arginine in a second consanguineous family. The phenotype closely resembled the index family, presenting with generalized tonic-clonic epilepsy, mental retardation and ataxia, but also included prominent upper motor neuron disease. Moreover, we observed that the short-lived Wwox knock-out mouse display spontaneous and audiogenic seizures, a phenotype previously observed in the spontaneous Wwox mutant rat presenting with ataxia and epilepsy, indicating that homozygous WWOX mutations in different species causes cerebellar ataxia associated with epilepsy.


Assuntos
Ataxia Cerebelar/genética , Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Oxirredutases/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Células Cultivadas , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/epidemiologia , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único , Estrutura Secundária de Proteína , Arábia Saudita/epidemiologia , Oxidorredutase com Domínios WW , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA