Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecol Appl ; 31(4): e02306, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33595860

RESUMO

Managing ecosystems in the face of complex species interactions, and the associated uncertainty, presents a considerable ecological challenge. Altering those interactions via actions such as invasive species management or conservation translocations can result in unintended consequences, supporting the need to be able to make more informed decisions in the face of this uncertainty. We demonstrate the utility of ecosystem models to reduce uncertainty and inform future ecosystem management. We use Phillip Island, Australia, as a case study to investigate the impacts of two invasive species management options and consider whether a critically endangered mammal is likely to establish a population in the presence of invasive species. Qualitative models are used to determine the effects of apex predator removal (feral cats) and invasive prey removal (rabbits, rats, and mice). We extend this approach using Ensemble Ecosystem Models to consider how suppression, rather than eradication influences the species community; and consider whether an introduction of the critically endangered eastern barred bandicoot is likely to be successful in the presence of invasive species. Our analysis revealed the potential for unintended outcomes associated with feral cat control operations, with rats and rabbits expected to increase in abundance. A strategy based on managing prey species appeared to have the most ecosystem-wide benefits, with rodent control showing more favorable responses than a rabbit control strategy. Eastern barred bandicoots were predicted to persist under all feral cat control levels (including no control). Managing ecosystems is a complex and imprecise process. However, qualitative modeling and ensemble ecosystem modeling address uncertainty and are capable of improving and optimizing management practices. Our analysis shows that the best conservation outcomes may not always be associated with the top-down control of apex predators, and land managers should think more broadly in relation to managing bottom-up processes as well. Challenges faced in continuing to conserve biodiversity mean new, bolder, conservation actions are needed. We suggest that endangered species are capable of surviving in the presence of feral cats, potentially opening the door for more conservation translocations.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Austrália , Gatos , Conservação dos Recursos Naturais , Camundongos , Comportamento Predatório , Coelhos , Ratos , Incerteza
2.
Behav Ecol ; 34(2): 297-305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998995

RESUMO

Habitat destruction and fragmentation increasingly bring humans into close proximity with wildlife, particularly in urban contexts. Animals respond to humans using nuanced anti-predator responses, especially escape, with responses influenced by behavioral and life history traits, the nature of the risk, and aspects of the surrounding environment. Although many studies examine associations between broad-scale habitat characteristics (i.e., habitat type) and escape response, few investigate the influence of fine-scale aspects of the local habitat within which escape occurs. We test the "habitat connectivity hypothesis," suggesting that given the higher cost of escape within less connected habitats (due to the lack of protective cover), woodland birds should delay escape (tolerate more risk) than when in more connected habitat. We analyze flight-initiation distances (FIDs) of five species of woodland birds in urban Melbourne, south-eastern Australia. A negative effect of habitat connectivity (the proportion of the escape route with shrubs/trees/perchable infrastructure) on distance fled was evident for all study species, suggesting a higher cost of escape associated with lower connectivity. FID did not vary with connectivity at the location at which escape was initiated (four species), apart from a positive effect of habitat connectivity on FID for Noisy Miner Manorina melanocephala. We provide some support for two predictions of the "habitat connectivity hypothesis" in at least some taxa, and conclude it warrants further investigation across a broader range of taxa inhabiting contrasting landscapes. Increasing habitat connectivity within urban landscapes may reduce escape stress experienced by urban birds.

3.
Sci Total Environ ; 851(Pt 2): 158318, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037901

RESUMO

Refugia within landscapes are increasingly important as climate change intensifies, yet identifying refugia, and how they respond to climatic perturbations remains understudied. We use Normalized Difference Vegetation Index (NDVI) developed during extreme drought to identify drought refugia. We then utilise camera trapping to understand the ecological role and importance of these refugia under fluctuating rainfall conditions. Ground foraging mammals and birds were surveyed annually from 2016 to 2019 whereby 171 remote-sensing cameras were deployed in the southern section of the Grampians, Australia. NDVI values were calculated during Australia's millennium drought, allowing the assessment of how NDVI calculated during extreme drought predicts drought refugia and the response of biodiversity to NDVI under rainfall fluctuations. Site occupancy of bird and mammal assemblages were dependent on NDVI, with areas of high NDVI during drought exhibiting characteristics consistent with refugia. Rainfall pulses increased site occupancy at all sites with colonisation probability initially associated with higher NDVI sites. Extinction probabilities were greatest at low NDVI sites when rainfall declined. Within mesic systems, remotely sensed NDVI can identify areas of the landscape that act as drought refugia enabling landscape management to prioritise species conservation within these areas. The protection and persistence of refugia is crucial in ensuring landscapes and their species communities therein are resilient to a range of climate change scenarios.


Assuntos
Secas , Refúgio de Vida Selvagem , Animais , Aves , Mudança Climática , Mamíferos , Ecossistema
4.
PLoS One ; 17(7): e0271893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867695

RESUMO

Hunting is a prominent feature of many human societies. Advancements in hunting technologies can challenge the ethics and sustainability of hunting globally. We investigated the efficacy of an electronic acoustic lure ('quail caller'), in attracting the otherwise difficult-to hunt stubble quail Coturnix pectoralis in Victoria, Australia. Using distance sampling, the density and abundance of stubble quail was estimated at 79 sites across a range of habitat types in an agricultural setting, each with an active 'quail caller' station continuously broadcasting for 48 hours, and a control station (no broadcast). Quail detectability at the active stations (62.9%) far exceeded that at control stations (6.3%). Most (57%) detections occurred within 30 m of active 'quail callers'. Stubble quail relative abundance was substantially greater when 'quail callers' were broadcasting. Cameras mounted near 'quail callers' identified the predatory red fox as a non-target predator, although rates of attraction appear similar between active and control sites. 'Quail callers' are highly effective at attracting stubble quail and concentrating them to a known area, raising questions in relation to sustainable hunting practices, indirect effects, and ethical implications. 'Quail callers' do, however, also offer a tool for estimating quail abundance and developing more accurate population size estimates.


Assuntos
Coturnix , Codorniz , Animais , Eletrônica , Humanos , Comportamento Predatório , Vitória
5.
PLoS One ; 16(5): e0252092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033663

RESUMO

Passive acoustic monitoring (PAM) is increasingly being used for the survey of vocalising wildlife species that are otherwise cryptic and difficult to survey. Our study aimed to develop PAM guidelines for detecting the Yellow-bellied Glider, a highly vocal arboreal marsupial that occurs in native Eucalyptus forests in eastern and south-eastern Australia. To achieve this, we considered the influence of background noise, weather conditions, lunar illumination, time since sunset and season on the probability of detecting vocalisations. We deployed Autonomous Recording Units (ARUs) at 43 sites in the Central Highlands of Victoria during two periods: spring/summer (October 2018 to January 2019), and autumn/winter (May to August 2019). ARUs were programmed to record for 11 hours from sunset for 14 consecutive days during each period. Background noise resulted from inclement weather (wind and rain) and masked vocalisations in spectrograms of the recordings, thus having the greatest influence on detection probability. Vocalisations were most common in the four hours after sunset. Rainfall negatively influenced detection probability, especially during the autumn/winter sampling period. Detection of Yellow-bellied Gliders with PAM requires deploying ARUs programmed to record for four hours after sunset, for a minimum of six nights with minimal inclement weather (light or no wind or rain). The survey period should be extended to 12 nights when rain or wind are forecast. Because PAM is less labour intensive than active surveys (i.e., spotlighting and call playbacks with multiple observers and several nights' survey per site), its use will facilitate broad-scale surveys for Yellow-bellied Gliders.


Assuntos
Marsupiais/fisiologia , Vocalização Animal/fisiologia , Acústica , Animais , Austrália
6.
Behav Processes ; 181: 104250, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32971223

RESUMO

Few studies of animal escape behaviour simultaneously investigate behavioural and physiological responses. Differences between these response types, however, have consequences for the way in which habituation or tolerance is interpreted - behavioural habituation may incur physiological costs. We simultaneously measured heart rate (HR) and behavioural responses during standardised approaches to incubating Masked Lapwings Vanellus miles, an urban-frequenting ground-nesting bird. We describe the existence of a distinct Physiological-Initiation Distance (PID) that precedes Flight-Initiation Distance (FID) but does not necessarily precede Alert Distance (AD). Two distinct response types occurred: 'startle', where a behavioural or physiological response coincided with the appearance of a person (always the investigator; 75.9 % of 58 birds) and 'non-startle' responses, where a behavioural or physiological response occurred after the appearance of, and commencement of the approach by, the person (24.1 % or 14 birds). For birds which were not startled, the interval between the initial heart rate increase and heart rate peak increased with clutch age. For birds which were startled, longer durations of post-peak HR elevation were associated with shorter FIDs and older clutches. Thus, reduced FIDs (generally interpreted as a sign of habituation or tolerance) are associated with greater physiological costs through longer durations of elevated HR. Additionally, the existence of, often long and undetectable, PIDs suggests: 1) that behavioural measures of response underestimate responses in general, and 2) that the methodological assumption when collecting FIDs, that starting distances exceed response distances, may often be incorrect yet are visually undetectable. Further studies of a variety of taxa are warranted to determine the associations between behavioural and physiological responses, and should these associations prove reliable, they would ideally generate general predictions of PID from readily measurable behavioural metrics (FID or AD), thus enabling prescriptions to manage the consequences of human interactions with wildlife.


Assuntos
Comportamento Animal , Aves , Animais
7.
Int J Parasitol Parasites Wildl ; 12: 126-133, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32547918

RESUMO

Toxoplasma gondii is considered a disease risk for many native Australian species. Feral cats are the key definitive host of T. gondii in Australia and therefore, investigating the epidemiology of T. gondii in cat populations is essential to understanding the risk posed to wildlife. Test sensitivity and specificity are poorly defined for diagnostic tests targeting T. gondii in cats and there is a need for validated techniques. This study focused on the feral cat population on Phillip Island, Victoria, Australia. We compared a novel real-time PCR (qPCR) protocol to the modified agglutination test (MAT) and used a Bayesian latent class modelling approach to assess the diagnostic parameters of each assay and estimate the true prevalence of T. gondii in feral cats. In addition, we performed multivariable logistic regression to determine risk factors associated with T. gondii infection in cats. Overall T. gondii prevalence by qPCR and MAT was 79.5% (95% confidence interval 72.6-85.0) and 91.8% (84.6-95.8), respectively. Bayesian modelling estimated the sensitivity and specificity of the MAT as 96.2% (95% credible interval 91.8-98.8) and 82.1% (64.9-93.6), and qPCR as 90.1% (83.6-95.5) and 96.0% (82.1-99.8), respectively. True prevalence of T. gondii infection in feral cats on Phillip Island was estimated as 90.3% (83.2-95.1). Multivariable logistic regression analysis indicated that T. gondii infection was positively associated with weight and this effect was modified by season. Cats trapped in winter had a high probability of infection, regardless of weight. The present study suggests qPCR applied to tissue is a highly sensitive, specific and logistically feasible tool for T. gondii testing in feral cat populations. Additionally, T. gondii infection is highly prevalent in feral cats on Phillip Island, which may have significant impacts on endemic and introduced marsupial populations.

8.
PLoS One ; 13(7): e0199396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30020938

RESUMO

Surveying terrestrial species across diverse habitats is important for predicting species' distributions and implementing conservation actions. For vocalising species, passive acoustic monitoring (PAM) is increasing in popularity; however, survey design rarely considers the factors influencing the timing and occurrence of vocalisations and in turn, how they may influence detectability of the species. Here, we use the koala (Phascolarctos cinereus) as a case study to show how PAM can be used to first examine the factors influencing vocalisations, and then use occupancy modelling to make recommendations on survey design for the species. We used automated recording units to monitor koala vocalisations at ten sites between August 2016 and January 2017. The timing of male koala vocalisations was linked to time of sunset with vocalisations increasing two hours prior to sunset and peaking at four hours after sunset. Vocalisations had a seasonal trend, increasing from the early to middle stage of the breeding season. Koala population density and stage of the breeding season had more influence on detection probability than daily sampling schedule. Where population density was low, and during the early stage of the breeding season, 7 survey nights (recording for 6 hours from 20:00h to 02:00h; i.e. the period of peak bellowing activity) were required to be 95% confident of a site-specific absence. Our study provides an approach for designing effective passive acoustic surveys for terrestrial species.


Assuntos
Acústica , Biodiversidade , Ecossistema , Animais , Phascolarctidae , Densidade Demográfica , Dinâmica Populacional , Vocalização Animal
9.
PLoS One ; 9(3): e86592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599307

RESUMO

Invasive rodent species have established on 80% of the world's islands causing significant damage to island environments. Insular ecosystems support proportionally more biodiversity than comparative mainland areas, highlighting them as critical for global biodiversity conservation. Few techniques currently exist to adequately detect, with high confidence, species that are trap-adverse such as the black rat, Rattus rattus, in high conservation priority areas where multiple non-target species persist. This study investigates the effectiveness of camera trapping for monitoring invasive rodents in high conservation areas, and the influence of habitat features and density of colonial-nesting seabirds on rodent relative activity levels to provide insights into their potential impacts. A total of 276 camera sites were established and left in situ for 8 days. Identified species were recorded in discrete 15 min intervals, referred to as 'events'. In total, 19 804 events were recorded. From these, 31 species were identified comprising 25 native species and six introduced. Two introduced rodent species were detected: the black rat (90% of sites), and house mouse Mus musculus (56% of sites). Rodent activity of both black rats and house mice were positively associated with the structural density of habitats. Density of seabird burrows was not strongly associated with relative activity levels of rodents, yet rodents were still present in these areas. Camera trapping enabled a large number of rodents to be detected with confidence in site-specific absences and high resolution to quantify relative activity levels. This method enables detection of multiple species simultaneously with low impact (for both target and non-target individuals); an ideal strategy for monitoring trap-adverse invasive rodents in high conservation areas.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Animais , Austrália , Ecossistema , Ilhas , Camundongos , Fotografação , Densidade Demográfica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA