Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 16(2): 1050-5, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26690855

RESUMO

Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices.

2.
Nanotechnology ; 27(14): 145202, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26902734

RESUMO

Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic (84)Kr and (197)Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm(-1) in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles.

3.
Nanotechnology ; 25(13): 135611, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24598310

RESUMO

Silver nanoparticles (NPs) embedded in lithium niobate were fabricated via ion beam synthesis and are suitable for various plasmonic applications, e.g. enhancement of optical nonlinear effects. After room temperature silver implantation, annealing in the temperature range of 400-600 °C was performed in order to recrystallize the damaged lithium niobate surface layer. The shape of the silver NPs, their optical properties as well as the structural properties of their surrounding matrix have been analyzed for various annealing steps. TEM investigations show that annealing at 400 °C does not lead to recrystallization of the damaged lithium niobate. A recrystallization occurs upon increasing the annealing temperature to 500 or 600 °C, but simultaneously a second phase consisting of lithium triniobate forms. This is additionally supported by XRD measurements. By utilizing dynamic annealing, i.e. implanting silver at elevated temperatures of 400 °C, it is shown that the LiNbO3 matrix stays single crystalline during ion implantation and no LiNb3O8 is formed. This is additionally verified by comparing the positions of the surface plasmon resonances with calculations based on Mie's scattering theory.

4.
Nano Lett ; 13(8): 3602-6, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862660

RESUMO

Tin-doped cadmium sulfide nanowires reveal donor-acceptor pair transitions at low-temperature photoluminescence and furthermore exhibit ideal resonator morphology appropriate for lasing at continuous wave pumping. The continuous wave lasing mode is proven by the evolution of the emitted power and spectrum with increasing pump intensity. The high temperature stability up to 120 K at given pumping power is determined by the decreasing optical gain necessary for lasing in an electron-hole plasma.

5.
ACS Appl Mater Interfaces ; 6(20): 17474-80, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25212179

RESUMO

Resistive switching devices with a Nb2O5/NbOx bilayer stack combine threshold and memory switching. Here we present a new fabrication method to form such devices. Amorphous Nb2O5 layers were treated by a krypton irradiation. Two effects are found to turn the oxide partly into a metallic NbOx layer: preferential sputtering and interface mixing. Both effects take place at different locations in the material stack of the device; preferential sputtering affects the surface, while interface mixing appears at the bottom electrode. To separate both effects, devices were irradiated at different energies (4, 10, and 35 keV). Structural changes caused by ion irradiation are studied in detail. After successful electroforming, the devices exhibit the desired threshold switching. In addition, the choice of the current compliance defines whether a memory effect adds to the device. Findings from electrical characterization disclose a model of the layer modification during irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA