Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34048700

RESUMO

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Assuntos
Tecido Adiposo Marrom/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Termogênese , Adipócitos/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Temperatura Baixa , Gorduras na Dieta/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Transcrição Gênica
2.
Arterioscler Thromb Vasc Biol ; 44(6): 1346-1364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660806

RESUMO

BACKGROUND: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit ß5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit ß1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS: ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS: We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.


Assuntos
Tecido Adiposo Branco , Aterosclerose , Modelos Animais de Doenças , Síndrome Metabólica , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma , Receptores de LDL , Animais , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/genética , Aterosclerose/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Receptores de LDL/genética , Receptores de LDL/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Masculino , Inibidores de Proteassoma/farmacologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Doenças da Aorta/prevenção & controle , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/enzimologia , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Placa Aterosclerótica , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Knockout para ApoE , Camundongos , Metabolismo Energético/efeitos dos fármacos , Oligopeptídeos
3.
Proc Natl Acad Sci U S A ; 119(14): e2121133119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363568

RESUMO

Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.


Assuntos
Aterosclerose , Autofagia Mediada por Chaperonas , Animais , Aterosclerose/genética , Aterosclerose/patologia , Autofagia Mediada por Chaperonas/genética , Modelos Animais de Doenças , Lisossomos/metabolismo , Camundongos
4.
Am J Physiol Renal Physiol ; 326(5): F681-F693, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205540

RESUMO

Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Jejum , Glicocálix , Glomérulos Renais , Estresse Oxidativo , Animais , Glicocálix/metabolismo , Glicocálix/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Glicemia/metabolismo , Albuminúria/metabolismo , Camundongos , Glucuronidase/metabolismo , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , Dieta
5.
J Transl Med ; 22(1): 448, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741137

RESUMO

PURPOSE: The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS: A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS: The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION: Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Lipidômica , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Retinopatia Diabética/sangue , Retinopatia Diabética/diagnóstico , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Estudos de Casos e Controles , Lipídeos/sangue , Idoso , Análise Discriminante , Fatores de Risco , Análise dos Mínimos Quadrados
6.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
7.
FASEB J ; 37(2): e22772, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36645117

RESUMO

Circadian disruption (CD) is the consequence of a mismatch between endogenous circadian rhythms and behavior, and frequently occurs in shift workers. CD has often been linked to impairment of glucose and lipid homeostasis. It is, however, unknown if these effects are sex dependent. Here, we subjected male and female C57BL/6J mice to 6-h light phase advancements every 3 days to induce CD and assessed glucose and lipid homeostasis. Within this model, we studied the involvement of gonadal sex hormones by injecting mice with gonadotropin-releasing hormone-antagonist degarelix. We demonstrate that CD has sex-specific effects on glucose homeostasis, as CD elevated fasting insulin levels in male mice while increasing fasting glucose levels in female mice, which appeared to be independent of behavior, food intake, and energy expenditure. Absence of gonadal sex hormones lowered plasma insulin levels in male mice subjected to CD while it delayed glucose clearance in female mice subjected to CD. CD elevated plasma triglyceride (TG) levels and delayed plasma clearance of TG-rich lipoproteins in both sexes, coinciding with reduced TG-derived FA uptake by adipose tissues. Absence of gonadal sex hormones did not notably alter the effects of CD on lipid metabolism. We conclude that CD causes sex-dependent effects on glucose metabolism, as aggravated by male gonadal sex hormones and partly rescued by female gonadal sex hormones. Future studies on CD should consider the inclusion of both sexes, which may eventually contribute to personalized advice for shift workers.


Assuntos
Hormônios Esteroides Gonadais , Insulinas , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos C57BL , Homeostase , Glucose/metabolismo , Ritmo Circadiano , Insulinas/farmacologia
8.
FASEB J ; 37(1): e22719, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562708

RESUMO

The metabolic and inflammatory processes that are implicated in the development of cardiovascular diseases are under control of the biological clock. While skeletal muscle function exhibits circadian rhythms, it is unclear to what extent the beneficial health effects of exercise are restricted to unique time windows. We aimed to study whether the timing of exercise training differentially modulates the development of atherosclerosis and elucidate underlying mechanisms. We endurance-trained atherosclerosis-prone female APOE*3-Leiden.CETP mice fed a Western-type diet, a well-established human-like model for cardiometabolic diseases, for 1 h five times a week for 4 weeks either in their early or in their late active phase on a treadmill. We monitored metabolic parameters, the development of atherosclerotic lesions in the aortic root and assessed the composition of the gut microbiota. Late, but not early, exercise training reduced fat mass by 19% and the size of early-stage atherosclerotic lesions by as much as 29% compared to sedentary animals. No correlation between cholesterol exposure and lesion size was evident, as no differences in plasma lipid levels were observed, but circulating levels of the pro-inflammatory markers ICAM-1 and VCAM-1 were reduced with late exercise. Strikingly, we observed a time-of-day-dependent effect of exercise training on the composition of the gut microbiota as only late training increased the abundance of gut bacteria producing short-chain fatty acids with proposed anti-inflammatory properties. Together, these findings indicate that timing is a critical factor to the beneficial anti-atherosclerotic effects of exercise with a great potential to further optimize training recommendations for patients.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Camundongos , Humanos , Feminino , Animais , Aterosclerose/metabolismo , Colesterol , Ácidos Graxos Voláteis/farmacologia , Apolipoproteína E3 , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
9.
Arterioscler Thromb Vasc Biol ; 43(1): e29-e45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353989

RESUMO

BACKGROUND: The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear. We here investigated the contribution of retriever to hepatocytic lipoprotein receptor recycling and plasma lipids regulation. METHODS: Using somatic CRISPR/Cas9 gene editing, we generated liver-specific VPS35L or VPS26C-deficient mice. We determined total and surface levels of LDLR and LRP1 and plasma lipids. In addition, we studied the protein levels and composition of CCC and retriever. RESULTS: Hepatocyte VPS35L deficiency reduced VPS26C levels but had minimal impact on CCC composition. VPS35L deletion decreased hepatocytic surface expression of LDLR and LRP1, accompanied by a 21% increase in plasma cholesterol levels. Hepatic VPS26C ablation affected neither levels of VPS35L and CCC subunits, nor plasma lipid concentrations. However, VPS26C deficiency increased hepatic LDLR protein levels by 2-fold, probably compensating for reduced LRP1 functioning, as we showed in VPS26C-deficient hepatoma cells. Upon PCSK9 (proprotein convertase subtilisin/kexin type 9)-mediated LDLR elimination, VPS26C ablation delayed postprandial triglyceride clearance and increased plasma triglyceride levels by 26%. CONCLUSIONS: Our study suggests that VPS35L is shared between retriever and CCC to facilitate LDLR and LRP1 transport from endosomes to the cell surface. Conversely, retriever subunit VPS26C selectively transports LRP1, but not LDLR, and thereby may control hepatic uptake of postprandial triglyceride-rich lipoprotein remnants.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pró-Proteína Convertase 9 , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL , Triglicerídeos/metabolismo
10.
Circulation ; 146(10): 724-739, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35899625

RESUMO

BACKGROUND: Atherosclerotic cardiovascular disease is the main cause of mortality worldwide and is strongly influenced by circulating low-density lipoprotein (LDL) cholesterol levels. Only a few genes causally related to plasma LDL cholesterol levels have been identified so far, and only 1 gene, ANGPTL3, has been causally related to combined hypocholesterolemia. Here, our aim was to elucidate the genetic origin of an unexplained combined hypocholesterolemia inherited in 4 generations of a French family. METHODS: Using next-generation sequencing, we identified a novel dominant rare variant in the LIPC gene, encoding for hepatic lipase, which cosegregates with the phenotype. We characterized the impact of this LIPC-E97G variant on circulating lipid and lipoprotein levels in family members using nuclear magnetic resonance-based lipoprotein profiling and lipidomics. To uncover the mechanisms underlying the combined hypocholesterolemia, we used protein homology modeling, measured triglyceride lipase and phospholipase activities in cell culture, and studied the phenotype of APOE*3.Leiden.CETP mice after LIPC-E97G overexpression. RESULTS: Family members carrying the LIPC-E97G variant had very low circulating levels of LDL cholesterol and high-density lipoprotein cholesterol, LDL particle numbers, and phospholipids. The lysophospholipids/phospholipids ratio was increased in plasma of LIPC-E97G carriers, suggestive of an increased lipolytic activity on phospholipids. In vitro and in vivo studies confirmed that the LIPC-E97G variant specifically increases the phospholipase activity of hepatic lipase through modification of an evolutionarily conserved motif that determines substrate access to the hepatic lipase catalytic site. Mice overexpressing human LIPC-E97G recapitulated the combined hypocholesterolemic phenotype of the family and demonstrated that the increased phospholipase activity promotes catabolism of triglyceride-rich lipoproteins by different extrahepatic tissues but not the liver. CONCLUSIONS: We identified and characterized a novel rare variant in the LIPC gene in a family who presents with dominant familial combined hypocholesterolemia. This gain-of-function variant makes LIPC the second identified gene, after ANGPTL3, causally involved in familial combined hypocholesterolemia. Our mechanistic data highlight the critical role of hepatic lipase phospholipase activity in LDL cholesterol homeostasis and suggest a new LDL clearance mechanism.


Assuntos
Mutação com Ganho de Função , Lipase , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , HDL-Colesterol , LDL-Colesterol , Humanos , Lipase/genética , Lipoproteínas , Camundongos , Fosfolipases/genética
11.
Int J Obes (Lond) ; 47(3): 236-243, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732416

RESUMO

OBJECTIVES: Studies in mice have recently linked increased dietary choline consumption to increased incidence of obesity-related metabolic diseases, while several clinical trials have reported an anti-obesity effect of high dietary choline intake. Since the underlying mechanisms by which choline affects obesity are incompletely understood, the aim of the present study was to investigate the role of dietary choline supplementation in adiposity. METHODS: Female APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism and cardiometabolic diseases, were fed a Western-type diet supplemented with or without choline (1.2%, w/w) for up to 16 weeks. RESULTS: Dietary choline reduced body fat mass gain, prevented adipocyte enlargement, and attenuated adipose tissue inflammation. Besides, choline ameliorated liver steatosis and damage, associated with an upregulation of hepatic genes involved in fatty acid oxidation. Moreover, choline reduced plasma cholesterol, as explained by a reduction of plasma non-HDL cholesterol. Mechanistically, choline reduced hepatic VLDL-cholesterol secretion and enhanced the selective uptake of fatty acids from triglyceride-rich lipoprotein (TRL)-like particles by brown adipose tissue (BAT), consequently accelerating the clearance of the cholesterol-enriched TRL remnants by the liver. CONCLUSIONS: In APOE*3-Leiden.CETP mice, dietary choline reduces body fat by enhancing TRL-derived fatty acids by BAT, resulting in accelerated TRL turnover to improve hypercholesterolemia. These data provide a mechanistic basis for the observation in human intervention trials that high choline intake is linked with reduced body weight.


Assuntos
Tecido Adiposo Marrom , Colina , Camundongos , Feminino , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacologia , Colina/farmacologia , Colina/metabolismo , Colesterol , Triglicerídeos , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Fígado/metabolismo , Dieta , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo
12.
Magn Reson Med ; 90(4): 1316-1327, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37183785

RESUMO

PURPOSE: Activated brown adipose tissue (BAT) enhances lipid catabolism and improves cardiometabolic health. Quantitative MRI of the fat fraction (FF) of supraclavicular BAT (scBAT) is a promising noninvasive measure to assess BAT activity but suffers from high scan variability. We aimed to test the effects of coregistration and mutual thresholding on the scan variability in a fast (1 min) time-resolution MRI protocol for assessing scBAT FF changes during cold exposure. METHODS: Ten volunteers (age 24.8 ± 3.0 years; body mass index 21.2 ± 2.1 kg/m2 ) were scanned during thermoneutrality (32°C; 10 min) and mild cold exposure (18°C; 60 min) using a 12-point gradient-echo sequence (70 consecutive scans with breath-holds, 1.03 min per dynamic). Dynamics were coregistered to the first thermoneutral scan, which enabled drawing of single regions of interest in the scBAT depot. Voxel-wise FF changes were calculated at each time point and averaged across regions of interest. We applied mutual FF thresholding, in which voxels were included if their FF was greater than 30% FF in the reference scan and the registered dynamic. The efficacy of the coregistration was determined by using a moving average and comparing the mean squared error of residuals between registered and nonregistered data. Registered scBAT ΔFF was compared with single-scan thresholding using the moving average method. RESULTS: Registered scBAT ΔFF had lower mean square error values than nonregistered data (0.07 ± 0.05% vs. 0.16 ± 0.14%; p < 0.05), and mutual thresholding reduced the scBAT ΔFF variability by 30%. CONCLUSION: We demonstrate that coregistration and mutual thresholding improve stability of the data 2-fold, enabling assessment of small changes in FF following cold exposure.


Assuntos
Tecido Adiposo Marrom , Imageamento por Ressonância Magnética , Humanos , Adulto Jovem , Adulto , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Imageamento por Ressonância Magnética/métodos
13.
Metabolomics ; 19(6): 54, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278866

RESUMO

BACKGROUND: Gut bacteria play a crucial role in the metabolism of bile acids (BA). Whether an association exists between the fecal microbiota composition and circulating BA levels in humans is poorly understood. Here, we investigated the relationship between fecal microbiota diversity and composition with plasma levels of BA in young adults. METHODS: Fecal microbiota diversity/composition was analyzed with 16S rRNA sequencing in 80 young adults (74% women; 21.9 ± 2.2 years old). Plasma levels of BA were measured using liquid chromatography-tandem mass spectrometry. PERMANOVA and Spearman correlation analyses were used to investigate the association between fecal microbiota parameters and plasma levels of BA. RESULTS: Fecal microbiota beta (P = 0.025) and alpha diversity indexes of evenness (rho = 0.237, P = 0.033), Shannon (rho = 0.313, P = 0.004), and inverse Simpson (rho = 0.283, P = 0.010) were positively associated with plasma levels of the secondary BA glycolithocholic acid (GLCA). The relative abundance of genera belonging to the Firmicutes and Bacteroidetes phyla was positively correlated with plasma levels of GLCA (all rho ≥ 0.225, P ≤ 0.049). However, the relative abundance of species from Firmicutes and Bacteroidetes phyla were negatively correlated with plasma levels of primary and secondary BA (all rho ≤ - 0.220, P ≤ 0.045), except for the relative abundance of Bacteroides vulgatus, Alistipes onderdonkii, and Bacteroides xylanisolvens species (Bacteroidetes phylum) that were positively correlated with the plasma levels of GLCA. CONCLUSIONS: The relative abundance of specific fecal bacteria species is associated with plasma levels of BA in young adults. However, further investigations are required to validate whether the composition of the gut microbiota can regulate the plasma concentrations of BA in humans.


Assuntos
Ácidos e Sais Biliares , Firmicutes , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Firmicutes/genética , RNA Ribossômico 16S/genética , Metabolômica , Bactérias/genética , Bacteroidetes/genética
14.
Haematologica ; 108(7): 1873-1885, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475519

RESUMO

The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Corticosterona/farmacologia , Adipócitos , Obesidade , Inflamação , Antígenos CD40/genética , Ligante de CD40 , Hematopoese , Camundongos Endogâmicos C57BL
15.
Pharmacol Res ; 197: 106972, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898443

RESUMO

The main role of cholesteryl ester transfer protein (CETP) is the transfer of cholesteryl esters and triglycerides between high-density lipoprotein (HDL) particles and triglyceride-rich lipoprotein and low-density lipoprotein (LDL) particles. There is a long history of investigations regarding the inhibition of CETP as a target for reducing major adverse cardiovascular events. Initially, the potential effect on cardiovascular events of CETP inhibitors was hypothesized to be mediated by their ability to increase HDL cholesterol, but, based on evidence from anacetrapib and the newest CETP inhibitor, obicetrapib, it is now understood to be primarily due to reducing LDL cholesterol and apolipoprotein B. Nevertheless, evidence is also mounting that other roles of HDL, including its promotion of cholesterol efflux, as well as its apolipoprotein composition and anti-inflammatory, anti-oxidative, and anti-diabetic properties, may play important roles in several diseases beyond cardiovascular disease, including, but not limited to, Alzheimer's disease, diabetes, and sepsis. Furthermore, although Mendelian randomization analyses suggested that higher HDL cholesterol is associated with increased risk of age-related macular degeneration (AMD), excess risk of AMD was absent in all CETP inhibitor randomized controlled trial data comprising over 70,000 patients. In fact, certain HDL subclasses may, in contrast, be beneficial for treating the retinal cholesterol accumulation that occurs with AMD. This review describes the latest biological evidence regarding the relationship between HDL and CETP inhibition for Alzheimer's disease, type 2 diabetes mellitus, sepsis, and AMD.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Sepse , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , HDL-Colesterol , Proteínas de Transferência de Ésteres de Colesterol , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Doença de Alzheimer/complicações , Colesterol/metabolismo , Apolipoproteínas/metabolismo , Sepse/complicações
16.
Pharmacol Res ; 187: 106634, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574856

RESUMO

Activation of brown adipose tissue (BAT) with the ß3-adrenergic receptor agonist CL316,243 protects mice from atherosclerosis development, and the presence of metabolically active BAT is associated with cardiometabolic health in humans. In contrast, exposure to cold or treatment with the clinically used ß3-adrenergic receptor agonist mirabegron to activate BAT exacerbates atherosclerosis in apolipoprotein E (ApoE)- and low-density lipoprotein receptor (LDLR)-deficient mice, both lacking a functional ApoE-LDLR pathway crucial for lipoprotein remnant clearance. We, therefore, investigated the effects of mirabegron treatment on dyslipidemia and atherosclerosis development in APOE*3-Leiden.CETP mice, a humanized lipoprotein metabolism model with a functional ApoE-LDLR clearance pathway. Mirabegron activated BAT and induced white adipose tissue (WAT) browning, accompanied by selectively increased fat oxidation and attenuated fat mass gain. Mirabegron increased the uptake of fatty acids derived from triglyceride (TG)-rich lipoproteins by BAT and WAT, which was coupled to increased hepatic uptake of the generated cholesterol-enriched core remnants. Mirabegron also promoted hepatic very low-density lipoprotein (VLDL) production, likely due to an increased flux of fatty acids from WAT to the liver, and resulted in transient elevation in plasma TG levels followed by a substantial decrease in plasma TGs. These effects led to a trend toward lower plasma cholesterol levels and reduced atherosclerosis. We conclude that BAT activation by mirabegron leads to substantial metabolic benefits in APOE*3-Leiden.CETP mice, and mirabegron treatment is certainly not atherogenic. These data underscore the importance of the choice of experimental models when investigating the effect of BAT activation on lipoprotein metabolism and atherosclerosis.


Assuntos
Tecido Adiposo Marrom , Aterosclerose , Animais , Humanos , Camundongos , Agonistas Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Triglicerídeos , Receptores de LDL/metabolismo
17.
Diabetes Obes Metab ; 25(8): 2374-2387, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37202875

RESUMO

BACKGROUND: Composition of high-density lipoproteins (HDL) is emerging as an important determinant in the development of microvascular complications in type 2 diabetes mellitus (T2DM). Dutch South Asian (DSA) individuals with T2DM display an increased risk of microvascular complications compared with Dutch white Caucasian (DwC) individuals with T2DM. In this study, we aimed to investigate whether changes in HDL composition associate with increased microvascular risk in this ethnic group and lead to new lipoprotein biomarkers. MATERIALS AND METHODS: Using 1 H nuclear magnetic resonance spectroscopy and Bruker IVDr Lipoprotein Subclass Analysis (B.I.LISA) software, plasma lipoprotein changes were determined in 51 healthy individuals (30 DwC, 21 DSA) and 92 individuals with T2DM (45 DwC, 47 DSA) in a cross-sectional, case-control study. Differential HDL subfractions were investigated using multinomial logistic regression analyses, adjusting for possible confounders including BMI and diabetes duration. RESULTS: We identified HDL compositional differences between healthy and diabetic individuals in both ethnic groups. Specifically, levels of apolipoprotein A2 and HDL-4 subfractions were lower in DSA compared with DwC with T2DM. Apolipoprotein A2 and HDL-4 subfractions also negatively correlated with waist circumference, waist-to-hip ratio, haemoglobin A1c, glucose levels and disease duration in DSA with T2DM, and associated with increased incidence of microvascular complications. CONCLUSION: While HDL composition differed between controls and T2DM in both ethnic groups, the lower levels of lipid content in the smallest HDL subclass (HDL-4) in DSA with T2DM appeared to be more clinically relevant, with higher odds of having diabetes-related pan-microvascular complications such as retinopathy and neuropathy. These typical differences in HDL could be used as ethnicity-specific T2DM biomarkers.


Assuntos
Diabetes Mellitus Tipo 2 , Lipoproteínas HDL , Humanos , Estudos Transversais , Estudos de Casos e Controles , Apolipoproteína A-II , Lipoproteínas , Biomarcadores , HDL-Colesterol
18.
Arterioscler Thromb Vasc Biol ; 42(10): 1262-1271, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047410

RESUMO

BACKGROUND: In mice, GPR146 (G-protein-coupled receptor 146) deficiency reduces plasma lipids and protects against atherosclerosis. Whether these findings translate to humans is unknown. METHODS: Common and rare genetic variants in the GPR146 gene locus were used as research instruments in the UK Biobank. The Lifelines, The Copenhagen-City Heart Study, and a cohort of individuals with familial hypobetalipoproteinemia were used to find and study rare GPR146 variants. RESULTS: In the UK Biobank, carriers of the common rs2362529-C allele present with lower low-density lipoprotein cholesterol, apo (apolipoprotein) B, high-density lipoprotein cholesterol, apoAI, CRP (C-reactive protein), and plasma liver enzymes compared with noncarriers. Carriers of the common rs1997243-G allele, associated with higher GPR146 expression, present with the exact opposite phenotype. The associations with plasma lipids of the above alleles are allele dose-dependent. Heterozygote carriers of a rare coding variant (p.Pro62Leu; n=2615), predicted to be damaging, show a stronger reductions in the above parameters compared with carriers of the common rs2362529-C allele. The p.Pro62Leu variant is furthermore shown to segregate with low low-density lipoprotein cholesterol in a family with familial hypobetalipoproteinemia. Compared with controls, carriers of the common rs2362529-C allele show a marginally reduced risk of coronary artery disease (P=0.03) concomitant with a small effect size on low-density lipoprotein cholesterol (average decrease of 2.24 mg/dL in homozygotes) of this variant. Finally, mendelian randomization analyses suggest a causal relationship between GPR146 gene expression and plasma lipid and liver enzyme levels. CONCLUSIONS: This study shows that carriers of new genetic GPR146 variants have a beneficial cardiometabolic risk profile, but it remains to be shown whether genetic or pharmaceutical inhibition of GPR146 protects against atherosclerosis in humans.


Assuntos
Aterosclerose , Hipobetalipoproteinemias , Animais , Apolipoproteínas B/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Proteína C-Reativa , HDL-Colesterol , LDL-Colesterol , Humanos , Hipobetalipoproteinemias/genética , Camundongos , Preparações Farmacêuticas , Receptores Acoplados a Proteínas G/genética
19.
Scand J Med Sci Sports ; 33(9): 1607-1620, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37278109

RESUMO

Circulating bile acids (BA) are signaling molecules that control glucose and lipid metabolism. However, the effects of acute exercise on plasma levels of BA in humans remain poorly understood. Here, we evaluate the effects of a bout of maximal endurance exercise (EE) and resistance exercise (RE) on plasma levels of BA in young, sedentary adults. Concentration of eight plasma BA was measured by liquid chromatography-tandem mass spectrometry before and 3, 30, 60, and 120 min after each exercise bout. Cardiorespiratory fitness (CRF) was assessed in 14 young adults (21.8 ± 2.5 yo, 12 women); muscle strength was assessed in 17 young adults (22.4 ± 2.5 yo, 11 women). EE transiently decreased plasma levels of total, primary, and secondary BA at 3 and 30 min after exercise. RE exerted a prolonged reduction in plasma levels of secondary BA (p < 0.001) that lasted until 120 min. Primary BA levels of cholic acid (CA) and chenodeoxycholic acid (CDCA) were different across individuals with low/high CRF levels after EE (p ≤ 0.044); CA levels were different across individuals with low/high handgrip strength levels. High CRF individuals presented higher levels of CA and CDCA 120 min after exercise vs baseline (+77% and +65%) vs the low CRF group (-5% and -39%). High handgrip strength levels individuals presented higher levels of CA 120 min after exercise versus baseline (+63%) versus the low handgrip strength group (+6%). The study findings indicate that an individual's level of physical fitness can influence how circulating BA respond to both endurance and resistance exercise. Additionally, the study suggests that changes in plasma BA levels after exercising could be related to the control of glucose homeostasis in humans.


Assuntos
Ácidos e Sais Biliares , Treinamento Resistido , Adulto Jovem , Humanos , Feminino , Força da Mão , Exercício Físico , Glucose
20.
J Lipid Res ; 63(5): 100193, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278410

RESUMO

Triglyceride (TG)-lowering LPL variants in combination with genetic LDL-C-lowering variants are associated with reduced risk of coronary artery disease (CAD). Genetic variation in the APOA5 gene encoding apolipoprotein A-V also strongly affects TG levels, but the potential clinical impact and underlying mechanisms are yet to be resolved. Here, we aimed to study the effects of APOA5 genetic variation on CAD risk and plasma lipoproteins through factorial genetic association analyses. Using data from 309,780 European-ancestry participants from the UK Biobank, we evaluated the effects of lower TG levels as a result of genetic variation in APOA5 and/or LPL on CAD risk with or without a background of reduced LDL-C. Next, we compared lower TG levels via APOA5 and LPL variation with over 100 lipoprotein measurements in a combined sample from the Netherlands Epidemiology of Obesity study (N = 4,838) and the Oxford Biobank (N = 6,999). We found that lower TG levels due to combined APOA5 and LPL variation and genetically-influenced lower LDL-C levels afforded the largest reduction in CAD risk (odds ratio: 0.78 (0.73-0.82)). Compared to patients with genetically-influenced lower TG via LPL, genetically-influenced lower TG via APOA5 had similar and independent, but notably larger, effects on the lipoprotein profile. Our results suggest that lower TG levels as a result of APOA5 variation have strong beneficial effects on CAD risk and the lipoprotein profile, which suggest apo A-V may be a potential novel therapeutic target for CAD prevention.


Assuntos
Apolipoproteína A-V/metabolismo , Doença da Artéria Coronariana , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , LDL-Colesterol , Doença da Artéria Coronariana/genética , Humanos , Lipoproteínas , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA