Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2321496121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753517

RESUMO

RNASET2-deficient leukodystrophy is a rare infantile white matter disorder mimicking a viral infection and resulting in severe psychomotor impairments. Despite its severity, there is little understanding of cellular mechanisms of pathogenesis and no treatments. Recent research using the rnaset2 mutant zebrafish model has suggested that microglia may be the drivers of the neuropathology, due to their failure to digest apoptotic debris during neurodevelopment. Therefore, we developed a strategy for microglial replacement through transplantation of adult whole kidney marrow-derived macrophages into embryonic hosts. Using live imaging, we revealed that transplant-derived macrophages can engraft within host brains and express microglia-specific markers, suggesting the adoption of a microglial phenotype. Tissue-clearing strategies revealed the persistence of transplanted cells in host brains beyond embryonic stages. We demonstrated that transplanted cells clear apoptotic cells within the brain, as well as rescue overactivation of the antiviral response otherwise seen in mutant larvae. RNA sequencing at the point of peak transplant-derived cell engraftment confirms that transplantation can reduce the brain-wide immune response and particularly, the antiviral response, in rnaset2-deficient brains. Crucially, this reduction in neuroinflammation resulted in behavioral rescue-restoring rnaset2 mutant motor activity to wild-type (WT) levels in embryonic and juvenile stages. Together, these findings demonstrate the role of microglia as the cellular drivers of neuropathology in rnaset2 mutants and that macrophage transplantation is a viable strategy for microglial replacement in the zebrafish. Therefore, microglia-targeted interventions may have therapeutic benefits in RNASET2-deficient leukodystrophy.


Assuntos
Encéfalo , Macrófagos , Microglia , Animais , Encéfalo/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Leucoencefalopatias/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Microglia/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
2.
PLoS Pathog ; 18(4): e1010389, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446924

RESUMO

Meningitis caused by infectious pathogens is associated with vessel damage and infarct formation, however the physiological cause is often unknown. Cryptococcus neoformans is a human fungal pathogen and causative agent of cryptococcal meningitis, where vascular events are observed in up to 30% of patients, predominantly in severe infection. Therefore, we aimed to investigate how infection may lead to vessel damage and associated pathogen dissemination using a zebrafish model that permitted noninvasive in vivo imaging. We find that cryptococcal cells become trapped within the vasculature (dependent on their size) and proliferate there resulting in vasodilation. Localised cryptococcal growth, originating from a small number of cryptococcal cells in the vasculature was associated with sites of dissemination and simultaneously with loss of blood vessel integrity. Using a cell-cell junction tension reporter we identified dissemination from intact blood vessels and where vessel rupture occurred. Finally, we manipulated blood vessel tension via cell junctions and found increased tension resulted in increased dissemination. Our data suggest that global vascular vasodilation occurs following infection, resulting in increased vessel tension which subsequently increases dissemination events, representing a positive feedback loop. Thus, we identify a mechanism for blood vessel damage during cryptococcal infection that may represent a cause of vascular damage and cortical infarction during cryptococcal meningitis.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Animais , Criptococose/microbiologia , Humanos , Peixe-Zebra
3.
Fish Shellfish Immunol ; 148: 109490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471626

RESUMO

Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.


Assuntos
Neutrófilos , Peixe-Zebra , Animais , Macrófagos , Imunidade Inata , Animais Geneticamente Modificados , Larva , Mamíferos
4.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716264

RESUMO

Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.


Assuntos
Parede Celular/fisiologia , Peptidoglicano/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Homeostase , Meticilina/farmacologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Vancomicina/farmacologia
5.
J Cell Sci ; 134(5)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589501

RESUMO

Staphylococcus aureus infects ∼30% of the human population and causes a spectrum of pathologies ranging from mild skin infections to life-threatening invasive diseases. The strict host specificity of its virulence factors has severely limited the accuracy of in vivo models for the development of vaccines and therapeutics. To resolve this, we generated a humanised zebrafish model and determined that neutrophil-specific expression of the human C5a receptor conferred susceptibility to the S. aureus toxins PVL and HlgCB, leading to reduced neutrophil numbers at the site of infection and increased infection-associated mortality. These results show that humanised zebrafish provide a valuable platform to study the contribution of human-specific S. aureus virulence factors to infection in vivo that could facilitate the development of novel therapeutic approaches and essential vaccines.


Assuntos
Staphylococcus aureus , Fatores de Virulência , Animais , Humanos , Receptor da Anafilatoxina C5a/genética , Staphylococcus aureus/genética , Virulência , Fatores de Virulência/genética , Peixe-Zebra
6.
PLoS Pathog ; 17(9): e1009880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529737

RESUMO

Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Simbiose/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Sepse/imunologia , Sepse/microbiologia , Infecções Estafilocócicas/imunologia , Peixe-Zebra
7.
PLoS Pathog ; 17(3): e1009468, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788901

RESUMO

Peptidoglycan is the major structural component of the Staphylococcus aureus cell wall, in which it maintains cellular integrity, is the interface with the host, and its synthesis is targeted by some of the most crucial antibiotics developed. Despite this importance, and the wealth of data from in vitro studies, we do not understand the structure and dynamics of peptidoglycan during infection. In this study we have developed methods to harvest bacteria from an active infection in order to purify cell walls for biochemical analysis ex vivo. Isolated ex vivo bacterial cells are smaller than those actively growing in vitro, with thickened cell walls and reduced peptidoglycan crosslinking, similar to that of stationary phase cells. These features suggested a role for specific peptidoglycan homeostatic mechanisms in disease. As S. aureus missing penicillin binding protein 4 (PBP4) has reduced peptidoglycan crosslinking in vitro its role during infection was established. Loss of PBP4 resulted in an increased recovery of S. aureus from the livers of infected mice, which coincided with enhanced fitness within murine and human macrophages. Thicker cell walls correlate with reduced activity of peptidoglycan hydrolases. S. aureus has a family of 4 putative glucosaminidases, that are collectively crucial for growth. Loss of the major enzyme SagB, led to attenuation during murine infection and reduced survival in human macrophages. However, loss of the other three enzymes Atl, SagA and ScaH resulted in clustering dependent attenuation, in a zebrafish embryo, but not a murine, model of infection. A combination of pbp4 and sagB deficiencies resulted in a restoration of parental virulence. Our results, demonstrate the importance of appropriate cell wall structure and dynamics during pathogenesis, providing new insight to the mechanisms of disease.


Assuntos
Parede Celular/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Virulência/fisiologia , Animais , Camundongos , Peptidoglicano/metabolismo , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo , Peixe-Zebra
8.
Crit Rev Microbiol ; : 1-16, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999716

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is responsible for infections in people living with chronic respiratory conditions, such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Traditionally, in people with chronic respiratory disorders, P. aeruginosa infection has been managed with a combination of inhaled and intravenous antibiotic therapies. However, due in part to the prolonged use of antibiotics in these people, the emergence of multi-drug resistant P. aeruginosa strains is a growing concern. The development of anti-virulence therapeutics may provide a new means of treating P. aeruginosa lung infections whilst also combatting the AMR crisis, as these agents are presumed to exert reduced pressure for the emergence of drug resistance as compared to antibiotics. However, the pipeline for developing anti-virulence therapeutics is poorly defined, and it is currently unclear as to whether in vivo and in vitro models effectively replicate the complex pulmonary environment sufficiently to enable development and testing of such therapies for future clinical use. Here, we discuss potential targets for P. aeruginosa anti-virulence therapeutics and the effectiveness of the current models used to study them. Focus is given to the difficulty of replicating the virulence gene expression patterns of P. aeruginosa in the CF and NCFB lung under laboratory conditions and to the challenges this poses for anti-virulence therapeutic development.

9.
Am J Respir Cell Mol Biol ; 66(4): 439-451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081328

RESUMO

Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Neutrófilos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Oxidases Duais , Camundongos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Peixe-Zebra
11.
Immun Ageing ; 19(1): 31, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820929

RESUMO

BACKGROUND: Telomerase, the enzyme capable of elongating telomeres, is usually restricted in human somatic cells, which contributes to progressive telomere shortening with cell-division and ageing. T and B-cells cells are somatic cells that can break this rule and can modulate telomerase expression in a homeostatic manner. Whereas it seems intuitive that an immune cell type that depends on regular proliferation outbursts for function may have evolved to modulate telomerase expression it is less obvious why others may also do so, as has been suggested for macrophages and neutrophils in some chronic inflammation disease settings. The gut has been highlighted as a key modulator of systemic ageing and is a key tissue where inflammation must be carefully controlled to prevent dysfunction. How telomerase may play a role in innate immune subtypes in the context of natural ageing in the gut, however, remains to be determined. RESULTS: Using the zebrafish model, we show that subsets of gut immune cells have telomerase-dependent"hyper-long" telomeres, which we identified as being predominantly macrophages and dendritics (mpeg1.1+ and cd45+mhcII+). Notably, mpeg1.1+ macrophages have much longer telomeres in the gut than in their haematopoietic tissue of origin, suggesting that there is modulation of telomerase in these cells, in the gut. Moreover, we show that a subset of gut mpeg1.1+ cells express telomerase (tert) in young WT zebrafish, but that the relative proportion of these cells decreases with ageing. Importantly, this is accompanied by telomere shortening and DNA damage responses with ageing and a telomerase-dependent decrease in expression of autophagy and immune activation markers. Finally, these telomerase-dependent molecular alterations are accompanied by impaired phagocytosis of E. coli and increased gut permeability in vivo. CONCLUSIONS: Our data show that limiting levels of telomerase lead to alterations in gut immunity, impacting on the ability to clear pathogens in vivo. These are accompanied by increased gut permeability, which, together, are likely contributors to local and systemic tissue degeneration and increased susceptibility to infection with ageing.

12.
PLoS Pathog ; 15(3): e1007597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30921435

RESUMO

Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis.


Assuntos
Cryptococcus neoformans/metabolismo , Dinoprostona/análogos & derivados , Eicosanoides/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Cultura de Células , Criptococose/metabolismo , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Dinoprostona/metabolismo , Dinoprostona/fisiologia , Modelos Animais de Doenças , Eicosanoides/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , PPAR gama/metabolismo , Virulência/fisiologia , Peixe-Zebra/microbiologia
13.
J Immunol ; 202(2): 494-502, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552162

RESUMO

Drug-resistant mycobacteria are a rising problem worldwide. There is an urgent need to understand the immune response to tuberculosis to identify host targets that, if targeted therapeutically, could be used to tackle these currently untreatable infections. In this study we use an Il-1ß fluorescent transgenic line to show that there is an early innate immune proinflammatory response to well-established zebrafish models of inflammation and Mycobacterium marinum infection. We demonstrate that host-derived hypoxia signaling, mediated by the Hif-1α transcription factor, can prime macrophages with increased levels of Il-1ß in the absence of infection, upregulating neutrophil antimicrobial NO production, leading to greater protection against infection. Our data link Hif-1α to proinflammatory macrophage Il-1ß transcription in vivo during early mycobacterial infection and importantly highlight a host protective mechanism, via antimicrobial NO, that decreases disease outcomes and that could be targeted therapeutically to stimulate the innate immune response to better deal with infections.


Assuntos
Hipóxia/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/fisiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Animais Geneticamente Modificados , Antituberculosos/metabolismo , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Interleucina-1beta/genética , Óxido Nítrico/metabolismo , Peixe-Zebra
14.
Glia ; 68(7): 1531-1545, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32212285

RESUMO

The contribution of microglia in neurological disorders is emerging as a leading disease driver rather than a consequence of pathology. RNAseT2-deficient leukoencephalopathy is a severe childhood white matter disorder affecting patients in their first year of life and mimicking a cytomegalovirus brain infection. The early onset and resemblance of the symptoms to a viral infection suggest an inflammatory and embryonic origin of the pathology. There are no treatments available for this disease as our understanding of the cellular drivers of the pathology are still unknown. In this study, using a zebrafish mutant for the orthologous rnaset2 gene, we have identified an inflammatory signature in early development and an antiviral immune response in mature adult brains. Using the optical transparency and the ex utero development of the zebrafish larvae we studied immune cell behavior during brain development and identified abnormal microglia as an early marker of pathology. Live imaging and electron microscopy identified that mutant microglia displayed an engorged morphology and were filled with undigested apoptotic cells and undigested substrate. Using microglia-specific depletion and rescue experiments, we identified microglia as drivers of this embryonic phenotype and potential key cellular player in the pathology of RNAseT2-deficient leukoencephalopathy. Our zebrafish model also presented with reduced survival and locomotor defects, therefore recapitulating many aspects of the human disease. Our study therefore placed our rnaset2 mutant at the forefront of leukodystrophy preclinical models and highlighted tissue-specific approaches as future therapeutic avenues.


Assuntos
Apoptose/fisiologia , Encéfalo/metabolismo , Leucoencefalopatias/patologia , Microglia/metabolismo , Animais , Leucoencefalopatias/metabolismo , Mutação/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
15.
Thorax ; 74(5): 500-502, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30389827

RESUMO

Prognosticating idiopathic pulmonary fibrosis (IPF) is challenging, in part due to a lack of sensitive biomarkers. A recent article in Thorax described how hyperpolarised xenon magnetic resonance spectroscopy may quantify regional gas exchange in IPF lungs. In a population of patients with IPF, we find that the xenon signal from red blood cells diminishes relative to the tissue/plasma signal over a 12-month time period, even when the diffusion factor for carbon monoxide is static over the same time period. We conclude that hyperpolarised 129Xe MR spectroscopy may be sensitive to short-term changes in interstitial gas diffusion in IPF.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Capacidade de Difusão Pulmonar/métodos , Troca Gasosa Pulmonar/fisiologia , Isótopos de Xenônio/análise , Idoso , Feminino , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/fisiopatologia , Espectroscopia de Ressonância Magnética , Masculino
16.
Microbiology (Reading) ; 165(4): 367-385, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30625113

RESUMO

Staphylococcus aureus has colonized humans for at least 10 000 years, and today inhabits roughly a third of the population. In addition, S. aureus is a major pathogen that is responsible for a significant disease burden, ranging in severity from mild skin and soft-tissue infections to life-threatening endocarditis and necrotizing pneumonia, with treatment often hampered by resistance to commonly available antibiotics. Underpinning its versatility as a pathogen is its ability to evade the innate immune system. S. aureus specifically targets innate immunity to establish and sustain infection, utilizing a large repertoire of virulence factors to do so. Using these factors, S. aureus can resist phagosomal killing, impair complement activity, disrupt cytokine signalling and target phagocytes directly using proteolytic enzymes and cytolytic toxins. Although most of these virulence factors are well characterized, their importance during infection is less clear, as many display species-specific activity against humans or against animal hosts, including cows, horses and chickens. Several staphylococcal virulence factors display species specificity for components of the human innate immune system, with as few as two amino acid changes reducing binding affinity by as much as 100-fold. This represents a major issue for studying their roles during infection, which cannot be examined without the use of humanized infection models. This review summarizes the major factors S. aureus uses to impair the innate immune system, and provides an in-depth look into the host specificity of S. aureus and how this problem is being approached.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Fatores de Virulência/imunologia , Animais , Modelos Animais de Doenças , Especificidade de Hospedeiro , Humanos , Evasão da Resposta Imune , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética
17.
PLoS Pathog ; 13(7): e1006526, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742152

RESUMO

Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections.


Assuntos
Parede Celular/metabolismo , Enterococcus faecalis/citologia , Enterococcus faecalis/patogenicidade , Infecções por Bactérias Gram-Positivas/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Parede Celular/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Humanos , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Virulência , Peixe-Zebra/microbiologia
18.
Blood ; 130(8): 1014-1025, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28637666

RESUMO

The lifespan of neutrophils is plastic and highly responsive to factors that regulate cellular survival. Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim of this study was to define transcriptional responses to PKA activation and to delineate the roles of these factors in neutrophil function and survival. In human neutrophil gene array studies, we show that PKA activation upregulates a significant number of apoptosis-related genes, the most highly regulated of these being NR4A2 and NR4A3 Direct PKA activation by the site-selective PKA agonist pair N6/8-AHA (8-AHA-cAMP and N6-MB-cAMP) and treatment with endogenous activators of PKA, including adenosine and prostaglandin E2, results in a profound delay of neutrophil apoptosis and concomitant upregulation of NR4A2/3 in a PKA-dependent manner. NR4A3 expression is also increased at sites of neutrophilic inflammation in a human model of intradermal inflammation. PKA activation also promotes survival of murine neutrophil progenitor cells, and small interfering RNA to NR4A2 decreases neutrophil production in this model. Antisense knockdown of NR4A2 and NR4A3 homologs in zebrafish larvae significantly reduces the absolute neutrophil number without affecting cellular migration. In summary, we show that NR4A2 and NR4A3 are components of a downstream transcriptional response to PKA activation in the neutrophil, and that they positively regulate neutrophil survival and homeostasis.


Assuntos
Neutrófilos/citologia , Neutrófilos/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Peixe-Zebra/metabolismo , Animais , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Ativação Enzimática , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Larva/metabolismo , Camundongos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais , Transcrição Gênica
19.
Trends Immunol ; 37(5): 273-286, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27055913

RESUMO

Neutrophil migration to injured and pathogen-infected tissues is a fundamental component of innate immunity. An array of cellular and molecular events mediate this response to collectively guide neutrophils out of the vasculature and towards the core of the ensuing inflammatory reaction where they exert effector functions. Advances in imaging modalities have revealed that neutrophils can also exhibit motility away from sites of inflammation and injury, although it is unclear under what circumstances this reverse migration is a physiological protective response, and when it has pathophysiological relevance. Here we review different types of neutrophil reverse migration and discuss the current understanding of the associated mechanisms. In this context we propose clarifications to the existing terminology used to describe the many facets of neutrophil reverse migration.


Assuntos
Movimento Celular/imunologia , Imunidade Inata , Ativação de Neutrófilo , Neutrófilos/imunologia , Migração Transendotelial e Transepitelial , Animais , Endotélio Vascular/fisiologia , Humanos , Inflamação
20.
J Immunol ; 198(9): 3596-3604, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28289157

RESUMO

Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics.


Assuntos
Doenças dos Peixes/tratamento farmacológico , Inflamação/tratamento farmacológico , Microesferas , Neutrófilos/efeitos dos fármacos , Purinas/uso terapêutico , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Células Cultivadas , Quinases Ciclina-Dependentes/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Humanos , Interleucina-8/metabolismo , Lipossomos/uso terapêutico , Microscopia de Fluorescência , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/imunologia , Polimerização , Purinas/farmacologia , Roscovitina , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA