Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(19): 3520-3532.e26, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041435

RESUMO

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.


Assuntos
Amidas , Peptídeos , Amidas/química , Hidrogênio , Ligação de Hidrogênio , Lipídeos , Peptídeos/química
2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723038

RESUMO

The rise of antibiotic resistance calls for new therapeutics targeting resistance factors such as the New Delhi metallo-ß-lactamase 1 (NDM-1), a bacterial enzyme that degrades ß-lactam antibiotics. We present structure-guided computational methods for designing peptide macrocycles built from mixtures of l- and d-amino acids that are able to bind to and inhibit targets of therapeutic interest. Our methods explicitly consider the propensity of a peptide to favor a binding-competent conformation, which we found to predict rank order of experimentally observed IC50 values across seven designed NDM-1- inhibiting peptides. We were able to determine X-ray crystal structures of three of the designed inhibitors in complex with NDM-1, and in all three the conformation of the peptide is very close to the computationally designed model. In two of the three structures, the binding mode with NDM-1 is also very similar to the design model, while in the third, we observed an alternative binding mode likely arising from internal symmetry in the shape of the design combined with flexibility of the target. Although challenges remain in robustly predicting target backbone changes, binding mode, and the effects of mutations on binding affinity, our methods for designing ordered, binding-competent macrocycles should have broad applicability to a wide range of therapeutic targets.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Peptídeos/química , Peptídeos/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , Sítios de Ligação , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
3.
Nature ; 538(7625): 329-335, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27626386

RESUMO

Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Peptídeos/química , Peptídeos/síntese química , Estabilidade Proteica , Motivos de Aminoácidos , Cristalografia por Raios X , Ciclização , Dissulfetos/química , Temperatura Alta , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estereoisomerismo
4.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746206

RESUMO

While there has been progress in the de novo design of small globular miniproteins (50-65 residues) to bind to primarily concave regions of a target protein surface, computational design of minibinders to convex binding sites remains an outstanding challenge due to low level of overall shape complementarity. Here, we describe a general approach to generate computationally designed proteins which bind to convex target sites that employ geometrically matching concave scaffolds. We used this approach to design proteins binding to TGFßRII, CTLA-4 and PD-L1 which following experimental optimization have low nanomolar to picomolar affinities and potent biological activity. Co-crystal structures of the TGFßRII and CTLA-4 binders in complex with the receptors are in close agreement with the design models. Our approach provides a general route to generating very high affinity binders to convex protein target sites.

5.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865323

RESUMO

Deep learning networks offer considerable opportunities for accurate structure prediction and design of biomolecules. While cyclic peptides have gained significant traction as a therapeutic modality, developing deep learning methods for designing such peptides has been slow, mostly due to the small number of available structures for molecules in this size range. Here, we report approaches to modify the AlphaFold network for accurate structure prediction and design of cyclic peptides. Our results show this approach can accurately predict the structures of native cyclic peptides from a single sequence, with 36 out of 49 cases predicted with high confidence (pLDDT > 0.85) matching the native structure with root mean squared deviation (RMSD) less than 1.5 Å. Further extending our approach, we describe computational methods for designing sequences of peptide backbones generated by other backbone sampling methods and for de novo design of new macrocyclic peptides. We extensively sampled the structural diversity of cyclic peptides between 7-13 amino acids, and identified around 10,000 unique design candidates predicted to fold into the designed structures with high confidence. X-ray crystal structures for seven sequences with diverse sizes and structures designed by our approach match very closely with the design models (root mean squared deviation < 1.0 Å), highlighting the atomic level accuracy in our approach. The computational methods and scaffolds developed here provide the basis for custom-designing peptides for targeted therapeutic applications.

6.
Nat Commun ; 12(1): 3384, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099674

RESUMO

Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational "anchor extension" methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Peptídeos Cíclicos/farmacologia , Relação Estrutura-Atividade , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Ensaios Enzimáticos , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/isolamento & purificação , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/ultraestrutura , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/isolamento & purificação , Desacetilase 6 de Histona/ultraestrutura , Inibidores de Histona Desacetilases/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/ultraestrutura
7.
Protein Sci ; 29(12): 2433-2445, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058266

RESUMO

Cyclic symmetry is frequent in protein and peptide homo-oligomers, but extremely rare within a single chain, as it is not compatible with free N- and C-termini. Here we describe the computational design of mixed-chirality peptide macrocycles with rigid structures that feature internal cyclic symmetries or improper rotational symmetries inaccessible to natural proteins. Crystal structures of three C2- and C3-symmetric macrocycles, and of six diverse S2-symmetric macrocycles, match the computationally-designed models with backbone heavy-atom RMSD values of 1 Å or better. Crystal structures of an S4-symmetric macrocycle (consisting of a sequence and structure segment mirrored at each of three successive repeats) designed to bind zinc reveal a large-scale zinc-driven conformational change from an S4-symmetric apo-state to a nearly inverted S4-symmetric holo-state almost identical to the design model. These symmetric structures provide promising starting points for applications ranging from design of cyclic peptide based metal organic frameworks to creation of high affinity binders of symmetric protein homo-oligomers. More generally, this work demonstrates the power of computational design for exploring symmetries and structures not found in nature, and for creating synthetic switchable systems.


Assuntos
Modelos Moleculares , Peptídeos Cíclicos/química , Engenharia de Proteínas
8.
Protein Sci ; 27(9): 1611-1623, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30152054

RESUMO

Disulfide-rich peptides represent an important protein family with broad pharmacological potential. Recent advances in computational methods have made it possible to design new peptides which adopt a stable conformation de novo. Here, we describe a system to produce disulfide-rich de novo peptides using Escherichia coli as the expression host. The advantage of this system is that it enables production of uniformly 13 C- and 15 N-labeled peptides for solution nuclear magnetic resonance (NMR) studies. This expression system was used to isotopically label two previously reported de novo designed peptides, and to determine their solution structures using NMR. The ensemble of NMR structures calculated for both peptides agreed well with the design models, further confirming the accuracy of the design protocol. Collection of NMR data on the peptides under reducing conditions revealed a dependency on disulfide bonds to maintain stability. Furthermore, we performed long-time molecular dynamics (MD) simulations with tempering to assess the stability of two families of de novo designed peptides. Initial designs which exhibited a stable structure during simulations were more likely to adopt a stable structure in vitro, but attempts to utilize this method to redesign unstable peptides to fold into a stable state were unsuccessful. Further work is therefore needed to assess the utility of MD simulation techniques for de novo protein design.


Assuntos
Citosol/química , Citosol/metabolismo , Dissulfetos/química , Simulação de Dinâmica Molecular , Peptídeos/química , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Soluções
9.
Science ; 358(6369): 1461-1466, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29242347

RESUMO

Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with l-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of l- and d-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods.


Assuntos
Simulação por Computador , Desenho Assistido por Computador , Modelos Químicos , Peptídeos/química , Estabilidade Proteica , Desenho de Fármacos , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA