Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reproduction ; 160(3): 393-404, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32567555

RESUMO

Mammalian sperm cells acquire fertilizing capacity as a result of a process termed capacitation. Actin polymerization is important for capacitation; inhibiting actin polymerization prevents the adhesion and fusion of the sperm with the ovule. The main function of RHO proteins CDC42 and RHOA is to direct actin polymerization. Although these two RHO proteins are present in mammalian sperm, little is known about their role in capacitation, the acrosome reaction, and the way in which they direct actin polymerization. The purpose of this study was to determine the participation of CDC42 and RHOA in capacitation and the acrosome reaction and their relationship with actin polymerization using guinea pig sperm. Our results show that the inhibition of CDC42 and RHOA alters the kinetics of actin polymerization, capacitation, and the acrosome reaction in different ways. Our results also show that the initiation of actin polymerization and RHOA activation depend on the activation of CDC42 and that RHOA starts its activity and effect on actin polymerization when CDC42 reaches its maximum activity. Given that the inhibition of ROCK1 failed to prevent the acrosomal reaction, the participation of RHOA in capacitation and the acrosomal reaction is independent of its kinase 1 (ROCK1). In general, our results indicate that CDC42 and RHOA have different roles in capacitation and acrosomal reaction processes and that CDC42 plays a preeminent role.


Assuntos
Reação Acrossômica , Actinas/química , Capacitação Espermática , Espermatozoides/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Cobaias , Masculino , Polimerização , Espermatozoides/citologia , Proteína cdc42 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética
2.
J Cell Biochem ; 119(7): 5944-5959, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29600587

RESUMO

Ca2+ -activated Cl- channels (CaCCs) are anionic channels that regulate many important physiological functions associated with chloride and calcium flux in some somatic cells. The molecular identity of CaCCs was revealed to be TMEM16A and TMEM16B (also known as Anoctamin or ANO1 and ANO2, respectively) in all eukaryotes. A recent study suggests the presence of TMEM16A in human sperm and a relationship with the rhZP-induced acrosome reaction. However, to the best of our knowledge, little is known about the role of TMEM16A in other spermatic processes such as capacitation or motility. In this study, we evaluated the effects of two TMEM16A antagonists on capacitation, acrosome reaction, and motility in guinea pig sperm; these antagonists were T16Ainh-A01, belonging to a second generation of potent antagonists of TMEM16A, and niflumic acid (NFA), a well-known antagonist of TMEM16A (CaCCs). First of all, we confirmed that the absence of Cl- in the capacitation medium changes motility parameters, capacitation, and the progesterone-induced acrosome reaction. Using a specific antibody, TMEM16A was found as a protein band of ∼120 kDa, which localization was in the apical crest of the acrosome and the middle piece of the flagellum. Inhibition of TMEM16A by T16Ainh-A01 affected sperm physiology by reducing capacitation, blocking the progesterone-induced acrosome reaction under optimal capacitation conditions, inhibiting progressive motility, and the acquisition of hyperactivated motility, diminishing [Ca2+ ]i, and increasing [Cl- ]i. These changes in sperm kinematic parameters provide new evidence of the important role played by TMEM16A in the production of sperm capable of fertilizing oocytes.


Assuntos
Anoctamina-1/antagonistas & inibidores , Pirimidinas/farmacologia , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Tiazóis/farmacologia , Reação Acrossômica/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cálcio/metabolismo , Canais de Cloreto/antagonistas & inibidores , Cloretos/metabolismo , Cobaias , Masculino , Ácido Niflúmico/farmacologia
3.
Cell Tissue Res ; 369(2): 395-412, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28432466

RESUMO

Prior to fertilization, mammalian sperm undergo several molecular, biochemical and physiological changes in a process termed capacitation. However, the mechanisms explaining the involvement of cytoskeletal remodeling and membrane re-ordering in each process prior to fertilization remain poorly understood. We found that the migration of both flotillin microdomains and Src family kinases towards the apical ridge of guinea pig sperm occurs under capacitating conditions. This re-ordering is associated with spectrin cleavage by calpain. Moreover, Src, Fyn, Lyn and Hck interact with flotillin-1; this interaction increases in a capacitation-dependent manner and the increased autophosphorylation of these kinases is linked to flotillin-1 association. The aforementioned results are prevented by the inhibition of calpain by calpeptin. Thus, spectrin cytoskeleton cleavage during capacitation seems to precede the reorganization of flotillin microdomains and Src family kinases towards the apical ridge of the sperm head in order to initiate the signaling cascade required for proper capacitation and further acrosome reaction. The significance of the Src family kinase reorganization for capacitation is demonstrated by the inhibition of calpain during capacitation also preventing the Src-family-kinase-dependent phosphorylation of FAK at Tyr576/577. Our work further highlights the scaffolding properties of flotillin microdomains and reveals the importance of their large-scale segregation during capacitation.


Assuntos
Calpaína/metabolismo , Glicoproteínas/farmacologia , Proteínas de Membrana/metabolismo , Capacitação Espermática/efeitos dos fármacos , Quinases da Família src/metabolismo , Animais , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cobaias , Masculino , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Espectrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA