Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 182(3): 685-712.e19, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645325

RESUMO

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Pneumonia Viral/metabolismo , Proteômica/métodos , Células A549 , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , COVID-19 , Células CACO-2 , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação , Pneumonia Viral/virologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor Tirosina Quinase Axl
2.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
3.
Nature ; 583(7816): 459-468, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353859

RESUMO

A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Reposicionamento de Medicamentos , Terapia de Alvo Molecular , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Mapas de Interação de Proteínas , Proteínas Virais/metabolismo , Animais , Antivirais/classificação , Antivirais/farmacologia , Betacoronavirus/genética , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Chlorocebus aethiops , Clonagem Molecular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imunidade Inata , Espectrometria de Massas , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Domínios Proteicos , Mapeamento de Interação de Proteínas , Receptores sigma/metabolismo , SARS-CoV-2 , Proteínas Ligases SKP Culina F-Box/metabolismo , Células Vero , Proteínas Virais/genética , Tratamento Farmacológico da COVID-19
4.
PLoS Pathog ; 17(2): e1009110, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556143

RESUMO

Defective viral genomes (DVGs) are truncated and/or rearranged viral genomes produced during virus replication. Described in many RNA virus families, some of them have interfering activity on their parental virus and/or strong immunostimulatory potential, and are being considered in antiviral approaches. Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes spp. that infected millions of humans in the last 15 years. Here, we describe the DVGs arising during CHIKV infection in vitro in mammalian and mosquito cells, and in vivo in experimentally infected Aedes aegypti mosquitoes. We combined experimental and computational approaches to select DVG candidates most likely to have inhibitory activity and showed that, indeed, they strongly interfere with CHIKV replication both in mammalian and mosquito cells. We further demonstrated that some DVGs present broad-spectrum activity, inhibiting several CHIKV strains and other alphaviruses. Finally, we showed that pre-treating Aedes aegypti with DVGs prevented viral dissemination in vivo.


Assuntos
Aedes/virologia , Antivirais/farmacologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/genética , Vírus Defeituosos/genética , Genoma Viral , Replicação Viral , Animais , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Vírus Chikungunya/crescimento & desenvolvimento , Vírus Chikungunya/isolamento & purificação , Humanos , Mosquitos Vetores/virologia
5.
J Virol ; 95(22): e0097721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468175

RESUMO

Here, we examine in silico the infection dynamics and interactions of two Zika virus (ZIKV) genomes: one is the full-length ZIKV genome (wild type [WT]), and the other is one of the naturally occurring defective viral genomes (DVGs), which can replicate in the presence of the WT genome, appears under high-MOI (multiplicity of infection) passaging conditions, and carries a deletion encompassing part of the structural and NS1 protein-coding region. Ordinary differential equations (ODEs) were used to simulate the infection of cells by virus particles and the intracellular replication of the WT and DVG genomes that produce these particles. For each virus passage in Vero and C6/36 cell cultures, the rates of the simulated processes were fitted to two types of observations: virus titer data and the assembled haplotypes of the replicate passage samples. We studied the consistency of the model with the experimental data across all passages of infection in each cell type separately as well as the sensitivity of the model's parameters. We also determined which simulated processes of virus evolution are the most important for the adaptation of the WT and DVG interplay in these two disparate cell culture environments. Our results demonstrate that in the majority of passages, the rates of DVG production are higher inC6/36 cells than in Vero cells, which might result in tolerance and therefore drive the persistence of the mosquito vector in the context of ZIKV infection. Additionally, the model simulations showed a slower accumulation of infected cells under higher activation of the DVG-associated processes, which indicates a potential role of DVGs in virus attenuation. IMPORTANCE One of the ideas for lessening Zika pathogenicity is the addition of its natural or engineered defective virus genomes (DVGs) (have no pathogenicity) to the infection pool: a DVG is redirecting the wild-type (WT)-associated virus development resources toward its own maturation. The mathematical model presented here, attuned to the data from interplays between WT Zika viruses and their natural DVGs in mammalian and mosquito cells, provides evidence that the loss of uninfected cells is attenuated by the DVG development processes. This model enabled us to estimate the rates of virus development processes in the WT/DVG interplay, determine the key processes, and show that the key processes are faster in mosquito cells than in mammalian ones. In general, the presented model and its detailed study suggest in what important virus development processes the therapeutically efficient DVG might compete with the WT; this may help in assembling engineered DVGs for ZIKV and other flaviviruses.


Assuntos
Vírus Defeituosos , Interações entre Hospedeiro e Microrganismos , Infecção por Zika virus/virologia , Zika virus , Aedes , Animais , Chlorocebus aethiops , Vírus Defeituosos/crescimento & desenvolvimento , Vírus Defeituosos/patogenicidade , Células Vero , Replicação Viral , Zika virus/crescimento & desenvolvimento , Zika virus/patogenicidade
6.
PLoS Pathog ; 15(11): e1008089, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710653

RESUMO

Malnourishment, specifically overweight/obesity and undernourishment, affects more than 2.5 billion people worldwide, with the number affected ever-increasing. Concurrently, emerging viral diseases, particularly those that are mosquito-borne, have spread dramatically in the past several decades, culminating in outbreaks of several viruses worldwide. Both forms of malnourishment are known to lead to an aberrant immune response, which can worsen disease outcomes and reduce vaccination efficacy for viral pathogens such as influenza and measles. Given the increasing rates of malnutrition and spread of arthropod-borne viruses (arboviruses), there is an urgent need to understand the role of host nutrition on the infection, virulence, and transmission of these viruses. To address this gap in knowledge, we infected lean, obese, and undernourished mice with arthritogenic arboviruses from the genus Alphavirus and assessed morbidity, virus replication, transmission, and evolution. Obesity and undernourishment did not consistently influence virus replication in the blood of infected animals except for reductions in virus in obese mice late in infection. However, morbidity was increased in obese mice under all conditions. Using Mayaro virus (MAYV) as a model arthritogenic alphavirus, we determined that both obese and undernourished mice transmit virus less efficiently to mosquitoes than control (lean) mice. In addition, viral genetic diversity and replicative fitness were reduced in virus isolated from obese compared to lean controls. Taken together, nutrition appears to alter the course of alphavirus infection and should be considered as a critical environmental factor during outbreaks.


Assuntos
Aedes/virologia , Infecções por Alphavirus/etiologia , Infecções por Alphavirus/transmissão , Alphavirus/patogenicidade , Evolução Biológica , Estado Nutricional , Obesidade/virologia , Infecções por Alphavirus/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mosquitos Vetores/virologia , Obesidade/patologia , Virulência , Replicação Viral
7.
J Theor Biol ; 531: 110895, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34499915

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV -2), a causative agent of COVID-19 disease, poses a significant threat to public health. Since its outbreak in December 2019, Wuhan, China, extensive collection of diverse data from cell culture and animal infections as well as population level data from an ongoing pandemic, has been vital in assessing strategies to battle its spread. Mathematical modelling plays a key role in quantifying determinants that drive virus infection dynamics, especially those relevant for epidemiological investigations and predictions as well as for proposing efficient mitigation strategies. We utilized a simple mathematical model to describe and explain experimental results on viral replication cycle kinetics during SARS-CoV-2 infection of animal and human derived cell lines, green monkey kidney cells, Vero-E6, and human lung epithelium cells, A549-ACE2, respectively. We conducted cell infections using two distinct initial viral concentrations and quantified viral loads over time. We then fitted the model to our experimental data and quantified the viral parameters. We showed that such cellular tropism generates significant differences in the infection rates and incubation times of SARS-CoV-2, that is, the times to the first release of newly synthesised viral progeny by SARS-CoV-2-infected cells. Specifically, the rate at which A549-ACE2 cells were infected by SARS-CoV-2 was 15 times lower than that in the case of Vero-E6 cell infection and the duration of latent phase of A549-ACE2 cells was 1.6 times longer than that of Vero-E6 cells. On the other hand, we found no statistically significant differences in other viral parameters, such as viral production rate or infected cell death rate. Since in vitro infection assays represent the first stage in the development of antiviral treatments against SARS-CoV-2, discrepancies in the viral parameter values across different cell hosts have to be identified and quantified to better target vaccine and antiviral research.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , Modelos Teóricos , Pandemias , Vírion
8.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567991

RESUMO

Bunyaviruses have a tripartite negative-sense RNA genome. Due to the segmented nature of these viruses, if two closely related viruses coinfect the same host or vector cell, it is possible that RNA segments from either of the two parental viruses will be incorporated into progeny virions to give reassortant viruses. Little is known about the ability of tick-borne phleboviruses to reassort. The present study describes the development of minigenome assays for the tick-borne viruses Uukuniemi phlebovirus (UUKV) and Heartland phlebovirus (HRTV). We used these minigenome assays in conjunction with the existing minigenome system of severe fever with thrombocytopenia syndrome (SFTS) phlebovirus (SFTSV) to assess the abilities of viral N and L proteins to recognize, transcribe, and replicate the M segment-based minigenome of a heterologous virus. The highest minigenome activity was detected with the M segment-based minigenomes of cognate viruses. However, our findings indicate that several combinations utilizing N and L proteins of heterologous viruses resulted in M segment minigenome activity. This suggests that the M segment untranslated regions (UTRs) are recognized as functional promoters of transcription and replication by the N and L proteins of related viruses. Further, virus-like particle assays demonstrated that HRTV glycoproteins can package UUKV and SFTSV S and L segment-based minigenomes. Taken together, these results suggest that coinfection with these viruses could lead to the generation of viable reassortant progeny. Thus, the tools developed in this study could aid in understanding the role of genome reassortment in the evolution of these emerging pathogens in an experimental setting.IMPORTANCE In recent years, there has been a large expansion in the number of emerging tick-borne viruses that are assigned to the Phlebovirus genus. Bunyaviruses have a tripartite segmented genome, and infection of the same host cell by two closely related bunyaviruses can, in theory, result in eight progeny viruses with different genome segment combinations. We used genome analogues expressing reporter genes to assess the abilities of Phlebovirus nucleocapsid protein and RNA-dependent RNA polymerase to recognize the untranslated region of a genome segment of a related phlebovirus, and we used virus-like particle assays to assess whether viral glycoproteins can package genome analogues of related phleboviruses. Our results provide strong evidence that these emerging pathogens could reassort their genomes if they were to meet in nature in an infected host or vector. This reassortment process could result in viruses with new pathogenic properties.


Assuntos
Genoma Viral/genética , Phlebovirus/genética , Animais , Infecções por Bunyaviridae/virologia , Linhagem Celular , Mesocricetus , Filogenia , Regiões Promotoras Genéticas/genética , Carrapatos/virologia , Proteínas não Estruturais Virais/genética
9.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31270226

RESUMO

Chikungunya virus (CHIKV) is a reemerged arbovirus, a member of the Togaviridae family. It circulates through mosquito vectors mainly of the Aedes family and a mammalian host. CHIKV causes chikungunya fever, a mild to severe disease characterized by arthralgia, with some fatal outcomes described. In the past years, several outbreaks mainly caused by enhanced adaptation of the virus to the vector and ineffective control of the contacts between infected mosquito populations and the human host have been reported. Vaccines represent the best solution for the control of insect-borne viruses, including CHIKV, but are often unavailable. We designed live attenuated CHIKVs by applying a rational genomic design based on multiple replacements of synonymous codons. In doing so, the virus mutational robustness (capacity to maintain phenotype despite introduction of mutations to genotype) is decreased, driving the viral population toward deleterious evolutionary trajectories. When the candidate viruses were tested in the insect and mammalian hosts, we observed overall strong attenuation in both and greatly diminished signs of disease. Moreover, we found that the vaccine candidates elicited protective immunity related to the production of neutralizing antibodies after a single dose. During an experimental transmission cycle between mosquitoes and naive mice, vaccine candidates could be transmitted by mosquito bite, leading to asymptomatic infection in mice with compromised dissemination. Using deep-sequencing technology, we observed an increase in detrimental (stop) codons, which confirmed the effectiveness of this genomic design. Because the approach involves hundreds of synonymous modifications to the genome, the reversion risk is significantly reduced, rendering the viruses promising vaccine candidates.IMPORTANCE Chikungunya fever is a debilitating disease that causes severe pain to the joints, which can compromise the patient's lifestyle for several months and even in some grave cases lead to death. The etiological agent is chikungunya virus, an alphavirus transmitted by mosquito bite. Currently, there are no approved vaccines or treatments against the disease. In our research, we developed novel live attenuated vaccine candidates against chikungunya virus by applying an innovative genomic design. When tested in the insect and mammalian host, the vaccine candidates did not cause disease, elicited strong protection against further infection, and had low risk of reversion to pathogenic phenotypes.


Assuntos
Vírus Chikungunya/genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Imunidade Adaptativa/imunologia , Aedes/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/virologia , Mutação , Células Vero , Vacinas Virais/genética , Vacinas Virais/imunologia
10.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29695422

RESUMO

Bunyaviruses pose a significant threat to human health, prosperity, and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon-stimulated genes (ISGs), whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and the Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae, and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to the case against other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional RNase activity. Through use of an infectious virus-like particle (VLP) assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taking all the data together, we report that ISG20 is a broad and potent antibunyaviral factor but that some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance may influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance.IMPORTANCE There are hundreds of bunyaviruses, many of which cause life-threatening acute diseases in humans and livestock. The interferon (IFN) system is a key component of innate immunity, and type I IFNs limit bunyaviral propagation both in vitro and in vivo Type I IFN signaling results in the upregulation of hundreds of IFN-stimulated genes (ISGs), whose concerted action generates an "antiviral state." Although IFNs are critical in limiting bunyaviral replication and pathogenesis, much is still unknown about which ISGs inhibit bunyaviruses. Using ISG-expression screening, we examined the ability of ∼500 unique ISGs to inhibit Bunyamwera orthobunyavirus (BUNV), the prototypical bunyavirus. Using this approach, we identified ISG20, an interferon-stimulated exonuclease, as a potent inhibitor of BUNV. Interestingly, ISG20 possesses highly selective antibunyaviral activity, with multiple bunyaviruses being potently inhibited while some largely escape inhibition. We speculate that the ability of some bunyaviruses to escape ISG20 may influence their pathogenesis.


Assuntos
Antivirais/farmacologia , Vírus Bunyamwera/patogenicidade , Infecções por Bunyaviridae/prevenção & controle , Exonucleases/farmacologia , Genoma Viral , Interferons/metabolismo , Infecções por Bunyaviridae/metabolismo , Infecções por Bunyaviridae/virologia , Exonucleases/genética , Exorribonucleases , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos
11.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28592543

RESUMO

SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3' rapid amplification of cDNA ends (RACE), we mapped the 3' end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3' end of the N mRNA terminates upstream of a 5'-GCCAGCC-3' motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies.IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5'-GCCAGCC-3' motif present in the virus genomic S RNA.


Assuntos
Deleção de Genes , Interferons/metabolismo , Phlebovirus/genética , Phlebovirus/fisiologia , Terminação da Transcrição Genética , Proteínas não Estruturais Virais/genética , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Viabilidade Microbiana , Phlebovirus/imunologia , RNA Mensageiro/biossíntese
12.
J Virol ; 89(9): 4849-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673721

RESUMO

UNLABELLED: Uukuniemi virus (UUKV) is a tick-borne member of the Phlebovirus genus (family Bunyaviridae) and has been widely used as a safe laboratory model to study aspects of bunyavirus replication. Recently, a number of new tick-borne phleboviruses have been discovered, some of which, like severe fever with thrombocytopenia syndrome virus and Heartland virus, are highly pathogenic in humans. UUKV could now serve as a useful comparator to understand the molecular basis for the different pathogenicities of these related viruses. We established a reverse-genetics system to recover UUKV entirely from cDNA clones. We generated two recombinant viruses, one in which the nonstructural protein NSs open reading frame was deleted from the S segment and one in which the NSs gene was replaced with green fluorescent protein (GFP), allowing convenient visualization of viral infection. We show that the UUKV NSs protein acts as a weak interferon antagonist in human cells but that it is unable to completely counteract the interferon response, which could serve as an explanation for its inability to cause disease in humans. IMPORTANCE: Uukuniemi virus (UUKV) is a tick-borne phlebovirus that is apathogenic for humans and has been used as a convenient model to investigate aspects of phlebovirus replication. Recently, new tick-borne phleboviruses have emerged, such as severe fever with thrombocytopenia syndrome virus in China and Heartland virus in the United States, that are highly pathogenic, and UUKV will now serve as a comparator to aid in the understanding of the molecular basis for the virulence of these new viruses. To help such investigations, we have developed a reverse-genetics system for UUKV that permits manipulation of the viral genome. We generated viruses lacking the nonstructural protein NSs and show that UUKV NSs is a weak interferon antagonist. In addition, we created a virus that expresses GFP and thus allows convenient monitoring of virus replication. These new tools represent a significant advance in the study of tick-borne phleboviruses.


Assuntos
Interferons/antagonistas & inibidores , Vírus Uukuniemi/imunologia , Vírus Uukuniemi/fisiologia , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , DNA Complementar/genética , DNA Viral/genética , Deleção de Genes , Humanos , Recombinação Genética , Genética Reversa , Vírus Uukuniemi/genética , Proteínas não Estruturais Virais/genética
13.
Vaccines (Basel) ; 12(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39460303

RESUMO

BACKGROUND: This study aimed to support the end-of-shelf life specification (2.5 × 1010 virus particles [vp]) for the standard Ad26.COV2.S dose (5 × 1010 vp). METHODS: This randomized, double-blind Phase 3 study evaluated immunogenicity, reactogenicity, and safety of several Ad26.COV2.S dose levels (range 1.25 to 9 × 1010 vp) in 1593 adults between June 2021 and July 2023. RESULTS: Spike-binding antibody responses 28 days post-dose 1 were non-inferior for the 9 × 1010 vp, but not the 2.5 × 1010 vp group when compared with the standard dose. Non-inferiority was demonstrated in terms of spike-binding antibody responses 14 days post-dose 2 for each dose level, including the lowest dose level of 1.25 × 1010 vp, compared to 28 days after one dose and 14 days after two doses of the standard dose. Spike-binding antibody levels correlated well with virus neutralizing titers. There was no impact of pre-existing Ad26.COV2.S neutralizing titers on immunogenicity at any dose level. All dose levels were well tolerated. CONCLUSIONS: This study highlights the challenges associated with conducting clinical studies in a rapidly evolving environment and underscores the importance of platform data that can guide initial vaccine specifications such as shelf life during accelerated vaccine development. The present study supports the end-of-shelf life specifications for the approved Ad26.COV2.S dose, and could provide useful information in future vaccine developments using adenovirus vector vaccines.

14.
Vaccines (Basel) ; 12(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38793810

RESUMO

Ad26.COV2.S vaccination can lead to vaccine-induced immune thrombotic thrombocytopenia (VITT), a rare but severe adverse effect, characterized by thrombocytopenia and thrombosis. The mechanism of VITT induction is unclear and likely multifactorial, potentially including the activation of platelets and endothelial cells mediated by the vaccine-encoded spike protein (S protein). Here, we investigated the biodistribution of the S protein after Ad26.COV2.S dosing in three animal models and in human serum samples. The S protein was transiently present in draining lymph nodes of rabbits after Ad26.COV2.S dosing. The S protein was detected in the serum in all species from 1 day to 21 days after vaccination with Ad26.COV2.S, but it was not detected in platelets, the endothelium lining the blood vessels, or other organs. The S protein S1 and S2 subunits were detected at different ratios and magnitudes after Ad26.COV2.S or COVID-19 mRNA vaccine immunization. However, the S1/S2 ratio did not depend on the Ad26 platform, but on mutation of the furin cleavage site, suggesting that the S1/S2 ratio is not VITT related. Overall, our data suggest that the S-protein biodistribution and kinetics after Ad26.COV2.S dosing are likely not main contributors to the development of VITT, but other S-protein-specific parameters require further investigation.

15.
Sci Rep ; 13(1): 12798, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550340

RESUMO

The development of effective drugs to treat coronavirus infections remains a significant challenge for the scientific community. Recent evidence reports on the sigma-1 receptor (S1R) as a key druggable host protein in the SARS-CoV-1 and SARS-CoV-2 interactomes and shows a potent antiviral activity against SARS-CoV-2 for the S1R antagonist PB28. To improve PB28 activity, we designed and tested a series of its analogues and identified a compound that is fourfold more potent against SARS-CoV-2 than PB28 itself. Interestingly, we found no direct correlation between S1R affinity and SARS-CoV-2 antiviral activity. Building on this, we employed comparative induced fit docking and molecular dynamics simulations to gain insights into the possible mechanism that occurs when specific ligand-protein interactions take place and that may be responsible for the observed antiviral activity. Our findings offer a possible explanation for the experimental observations, provide insights into the S1R conformational changes upon ligand binding and lay the foundation for the rational design of new S1R ligands with potent antiviral activity against SARS-CoV-2 and likely other viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/química , Ligantes , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
16.
Nat Commun ; 14(1): 6030, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758692

RESUMO

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Proteômica , Replicação Viral/genética , SARS-CoV-2 , Antivirais/metabolismo , Interações Hospedeiro-Patógeno/genética
17.
Front Cell Infect Microbiol ; 12: 790851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360100

RESUMO

Animal models are essential to understanding COVID-19 pathophysiology and for preclinical assessment of drugs and other therapeutic or prophylactic interventions. We explored the small, cheap, and transparent zebrafish larva as a potential host for SARS-CoV-2. Bath exposure, as well as microinjection in the coelom, pericardium, brain ventricle, or bloodstream, resulted in a rapid decrease of SARS-CoV-2 RNA in wild-type larvae. However, when the virus was inoculated in the swim bladder, viral RNA stabilized after 24 h. By immunohistochemistry, epithelial cells containing SARS-CoV-2 nucleoprotein were observed in the swim bladder wall. Our data suggest an abortive infection of the swim bladder. In some animals, several variants of concern were also tested with no evidence of increased infectivity in our model. Low infectivity of SARS-CoV-2 in zebrafish larvae was not due to the host type I interferon response, as comparable viral loads were detected in type I interferon-deficient animals. A mosaic overexpression of human ACE2 was not sufficient to increase SARS-CoV-2 infectivity in zebrafish embryos or in fish cells in vitro. In conclusion, wild-type zebrafish larvae appear mostly non-permissive to SARS-CoV-2, except in the swim bladder, an aerial organ sharing similarities with the mammalian lung.


Assuntos
COVID-19 , Peixe-Zebra , Animais , Larva , Mamíferos , RNA Viral , SARS-CoV-2 , Bexiga Urinária
18.
Nat Cell Biol ; 24(1): 24-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027731

RESUMO

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a therapeutic target for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Células Epiteliais/virologia , SARS-CoV-2/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
19.
FEBS J ; 288(17): 5148-5162, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33864728

RESUMO

Small linear motifs targeting protein interacting domains called PSD-95/Dlg/ZO-1 (PDZ) have been identified at the C terminus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins E, 3a, and N. Using a high-throughput approach of affinity-profiling against the full human PDZome, we identified sixteen human PDZ binders of SARS-CoV-2 proteins E, 3A, and N showing significant interactions with dissociation constants values ranging from 3 to 82 µm. Six of them (TJP1, PTPN13, HTRA1, PARD3, MLLT4, LNX2) are also recognized by SARS-CoV while three (NHERF1, MAST2, RADIL) are specific to SARS-CoV-2 E protein. Most of these SARS-CoV-2 protein partners are involved in cellular junctions/polarity and could be also linked to evasion mechanisms of the immune responses during viral infection. Among the binders of the SARS-CoV-2 proteins E, 3a, or N, seven significantly affect viral replication under knock down gene expression in infected cells. This PDZ profiling identifying human proteins potentially targeted by SARS-CoV-2 can help to understand the multifactorial severity of COVID19 and to conceive effective anti-coronaviral agents for therapeutic purposes.


Assuntos
COVID-19/genética , Interações Hospedeiro-Patógeno/genética , Domínios PDZ/genética , SARS-CoV-2/genética , COVID-19/virologia , Proteínas de Transporte/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Cinesinas/genética , Miosinas/genética , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , SARS-CoV-2/patogenicidade , Proteínas do Envelope Viral/genética , Proteínas Viroporinas/genética , Internalização do Vírus , Replicação Viral/genética , Proteína da Zônula de Oclusão-1/genética
20.
Nat Commun ; 12(1): 2290, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863888

RESUMO

Arthropod-borne viruses pose a major threat to global public health. Thus, innovative strategies for their control and prevention are urgently needed. Here, we exploit the natural capacity of viruses to generate defective viral genomes (DVGs) to their detriment. While DVGs have been described for most viruses, identifying which, if any, can be used as therapeutic agents remains a challenge. We present a combined experimental evolution and computational approach to triage DVG sequence space and pinpoint the fittest deletions, using Zika virus as an arbovirus model. This approach identifies fit DVGs that optimally interfere with wild-type virus infection. We show that the most fit DVGs conserve the open reading frame to maintain the translation of the remaining non-structural proteins, a characteristic that is fundamental across the flavivirus genus. Finally, we demonstrate that the high fitness DVG is antiviral in vivo both in the mammalian host and the mosquito vector, reducing transmission in the latter by up to 90%. Our approach establishes the method to interrogate the DVG fitness landscape, and enables the systematic identification of DVGs that show promise as human therapeutics and vector control strategies to mitigate arbovirus transmission and disease.


Assuntos
Antivirais/administração & dosagem , Vírus Defeituosos/genética , Mosquitos Vetores/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Zika virus/genética , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Chlorocebus aethiops , Biologia Computacional , Evolução Molecular Direcionada , Modelos Animais de Doenças , Feminino , Aptidão Genética , Genoma Viral/genética , Células HEK293 , Humanos , Camundongos , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Fases de Leitura Aberta/genética , RNA Viral/genética , Células Vero , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA