Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Nature ; 592(7852): 54-59, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790446

RESUMO

Three-dimensional (3D) printing1-9 has revolutionized manufacturing processes for electronics10-12, optics13-15, energy16,17, robotics18, bioengineering19-21 and sensing22. Downscaling 3D printing23 will enable applications that take advantage of the properties of micro- and nanostructures24,25. However, existing techniques for 3D nanoprinting of metals require a polymer-metal mixture, metallic salts or rheological inks, limiting the choice of material and the purity of the resulting structures. Aerosol lithography has previously been used to assemble arrays of high-purity 3D metal nanostructures on a prepatterned substrate26,27, but in limited geometries26-30. Here we introduce a technique for direct 3D printing of arrays of metal nanostructures with flexible geometry and feature sizes down to hundreds of nanometres, using various materials. The printing process occurs in a dry atmosphere, without the need for polymers or inks. Instead, ions and charged aerosol particles are directed onto a dielectric mask containing an array of holes that floats over a biased silicon substrate. The ions accumulate around each hole, generating electrostatic lenses that focus the charged aerosol particles into nanoscale jets. These jets are guided by converged electric-field lines that form under the hole-containing mask, which acts similarly to the nozzle of a conventional 3D printer, enabling 3D printing of aerosol particles onto the silicon substrate. By moving the substrate during printing, we successfully print various 3D structures, including helices, overhanging nanopillars, rings and letters. In addition, to demonstrate the potential applications of our technique, we printed an array of vertical split-ring resonator structures. In combination with other 3D-printing methods, we expect our 3D-nanoprinting technique to enable substantial advances in nanofabrication.

2.
Nano Lett ; 24(19): 5783-5790, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695397

RESUMO

Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.

3.
Nano Lett ; 24(2): 708-714, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165767

RESUMO

Angle-dependent next-generation displays have potential applications in 3D stereoscopic and head-mounted displays, image combiners, and encryption for augmented reality (AR) and security. Metasurfaces enable such exceptional functionalities with groundbreaking achievements in efficient displays over the past decades. However, limitations in angular dispersion control make them unfit for numerous nanophotonic applications. Here, we propose a spin-selective angle-dependent all-dielectric metasurface with a unique design strategy to manifest distinct phase information at different incident angles of light. As a proof of concept, the phase masks of two images are encoded into the metasurface and projected at the desired focal plane under different angles of left circularly polarized (LCP) light. Specifically, the proposed multifunctional metasurface generates two distinct holographic images under LCP illumination at angles of +35 and -35°. The presented holographic displays may provide a feasible route toward multifunctional meta-devices for potential AR displays, encrypted imaging, and information storage applications.

4.
Nat Mater ; 22(4): 474-481, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36959502

RESUMO

Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.

5.
Opt Express ; 32(10): 17560-17570, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858937

RESUMO

In previous edge detection schemes based on the spin-orbit interaction of light, the direction and intensity of the edge-enhanced images are influenced by the incident polarization state. In this study, we develop an edge detection strategy that is insensitive to changes in both the incident polarization and the incident angle. The output intensity and transfer function remain entirely impervious to changes in incident polarization, being explicitly formulated as functions of the incident angle, specifically in terms of cot 2⁡θ i and cot⁡θ i , respectively. This behavior is attributed to the opposing nature of the polarization components E~r H-H and E~r V-V in the x-direction after undergoing mapping through the Glan polarizer, while the sum of polarization components E~r H-V and E~r V-H in the y-direction can be simplified to terms independent of incident polarization. Furthermore, we propose a metasurface design to achieve the required optical properties in order to realize the derived edge detection scheme.

6.
Nature ; 556(7701): 360-365, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670265

RESUMO

Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control2-4, a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly8-11, but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology12-18. Although a few studies18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct visualizations of macroscopic colour transformations. We anticipate that our strategy will aid in the rational design and fabrication of three-dimensional chiral nanostructures for use in plasmonic metamaterial applications.


Assuntos
Aminoácidos/química , Técnicas de Química Sintética/métodos , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Dicroísmo Circular , Cisteína/química , Ouro/efeitos da radiação , Luz , Nanopartículas Metálicas/efeitos da radiação , Rotação Ocular , Fotometria , Estereoisomerismo
7.
Nano Lett ; 23(15): 6958-6965, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478358

RESUMO

Metalenses have the potential to revolutionize optical devices into the next generation of consumer devices. Through new inventive strategies, metalenses with advanced functionalities have been released to integrate multiple responses into a single flat device. Here, we design metalenses that are sensitive to the incident spin angular momentum to provide three distinct modes based on the handedness of the incident and transmitted light. Propagation phase is employed to encode a hyperbolic lens phase to the metalens, while geometric phase is exploited for additional spin-selective properties. We experimentally demonstrate two different metalenses: the co-polarized channels function as a standard metalens, while the cross-polarized channels (1) deflect and (2) introduce orbital angular momentum to the transmitted light. We experimentally characterize the metalenses and prove their use for spin-selective imaging of visible light. We envision that such trichannel metalenses could be employed in chiral bioimaging, optical computing, and computer vision.

8.
Nano Lett ; 23(4): 1195-1201, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36622968

RESUMO

Metasurfaces have shown remarkable potential to manipulate many of light's intrinsic properties, such as phase, amplitude, and polarization. Recent advancements in nanofabrication technologies and persistent efforts from the research community result in the realization of highly efficient, broadband, and multifunctional metasurfaces. Simultaneous control of these characteristics in a single-layered metasurface will be an apparent technological extension. Here, we demonstrate a broadband multifunctional metasurface platform with the unprecedented ability to independently control the phase profile for two orthogonal polarization states of incident light over dual-wavelength spectra (ultraviolet to visible). In this work, multiple single-layered metasurfaces composed of bandgap-engineered silicon nitride nanoantennas are designed, fabricated, and optically characterized to demonstrate broadband multifunctional light manipulation ability, including structured beam generation and meta-interferometer implementation. We envision the presented metasurface platform opening new avenues for broadband multifunctional applications including ultraviolet-visible spectroscopy, spatially modulated illumination microscopy, optical data storage, and information encoding.

9.
Small ; 19(47): e2303749, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480180

RESUMO

Metamolecule clusters support various unique types of artificial electromagnetism at optical frequencies. However, the technological challenges regarding the freeform fabrication of freestanding metamolecule clusters with programmed geometries and multiple compositions remain unresolved. Here, the freeform, freestanding raspberry-like metamolecule (RMM) fibers based on the directional guidance of a femtoliter meniscus are presented, resulting in the evaporative co-assembly of silica nanoparticles and gold nanoparticles with the aid of 3D nanoprinting. This method offers a facile and universal pathway to shape RMM fibers in 3D, enabling versatile manipulation of near- and far-field characteristics. In particular, the authors demonstrate the ability to decrease the scattering of the millimeter-scale RMM fiber in visible spectrum. In addition, the influence of electric and magnetic dipole modes on the directional scattering of RMM fibers is investigated. These experiments show that the magnetic response of an individual RMM can be controlled by adjusting the filling factor of gold nanoparticles. The authors anticipate that this method will allow for unrestricted design and realization of nanophotonic structures, surpassing the limitations of conventional fabrication processes.

10.
Chem Rev ; 121(21): 13013-13050, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34491723

RESUMO

Optically variable devices (OVDs) are in tremendous demand as optical indicators against the increasing threat of counterfeiting. Conventional OVDs are exposed to the danger of fraudulent replication with advances in printing technology and widespread copying methods of security features. Metasurfaces, two-dimensional arrays of subwavelength structures known as meta-atoms, have been nominated as a candidate for a new generation of OVDs as they exhibit exceptional behaviors that can provide a more robust solution for optical anti-counterfeiting. Unlike conventional OVDs, metasurface-driven OVDs (mOVDs) can contain multiple optical responses in a single device, making them difficult to reverse engineered. Well-known examples of mOVDs include ultrahigh-resolution structural color printing, various types of holography, and polarization encoding. In this review, we discuss the new generation of mOVDs. The fundamentals of plasmonic and dielectric metasurfaces are presented to explain how the optical responses of metasurfaces can be manipulated. Then, examples of monofunctional, tunable, and multifunctional mOVDs are discussed. We follow up with a discussion of the fabrication methods needed to realize these mOVDs, classified into prototyping and manufacturing techniques. Finally, we provide an outlook and classification of mOVDs with respect to their capacity and security level. We believe this newly proposed concept of OVDs may bring about a new era of optical anticounterfeit technology leveraging the novel concepts of nano-optics and nanotechnology.


Assuntos
Nanotecnologia , Óptica e Fotônica
11.
Nano Lett ; 22(12): 4702-4711, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35622690

RESUMO

Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Pontos Quânticos , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Pontos Quânticos/química
12.
J Am Chem Soc ; 143(28): 10582-10589, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34213897

RESUMO

Despite the enormous application potential, methods for conformal few-atomic-layer deposition on colloidal nanocrystals (NCs) are scarce. Similar to the process of lamination, we introduce a "confine and shine" strategy to homogeneously modify the different surface curvatures of plasmonic NCs with ultrathin conformal layers of diverse catalytic noble metals. This self-limited epitaxial skinlike metal growth harvests the localized surface plasmon resonance to induce reduction chemistry directly on the NC surface, confined inside hollow silica. This strategy avoids any kinetic anisotropic metal deposition. Unlike the conventional thick, anisotropic, and dendritic shells, which show severe nonradiative damping, the skinlike metal lamination preserves the key plasmonic properties of the core NCs. Consequently, the plasmonic-catalytic hybrid nanoreactors can carry out a variety of organic reactions with impressive rates.

13.
J Am Chem Soc ; 143(49): 20725-20734, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783563

RESUMO

Extraordinary properties of traditional hyperbolic metamaterials, not found in nature, arise from their man-made subwavelength structures causing unique light-matter interactions. However, their preparation requiring nanofabrication processes is highly challenging and merely provides nanoscale two-dimensional structures. Stabilizing their bulk forms via scalable procedures has been a sought-goal for broad applications of this technology. Herein, we report a new strategy of designing and realizing bulk metamaterials with finely tunable hyperbolic responses. We develop a facile two-step process: (1) self-assembly to obtain heterostructured nanohybrids of building blocks and (2) consolidation to convert nanohybrid powders to dense bulk pellets. Our samples have centimeter-scale dimensions typically, readily further scalable. Importantly, the thickness of building blocks and their relative concentration in bulk materials serve as a delicate means of controlling hyperbolic responses. The resulting new bulk heterostructured material system consists of the alternating h-BN and graphite/graphene nanolayers and exhibits significant modulation in both type-I and type-II hyperbolic resonance modes. It is the first example of real bulk hyperbolic metamaterials, consequently displaying the capability of tuning their responses along both in-plane and out-of-plane directions of the materials for the first time. It also distinctly interacts with unpolarized and polarized transverse magnetic and electronic beams to give unique hyperbolic responses. Our achievement can be a new platform to create various bulk metamaterials without complicated nanofabrication techniques. Our facile synthesis method using common laboratory techniques can open doors to broad-range researchers for active interdisciplinary studies for this otherwise hardly accessible technology.

14.
Opt Express ; 29(14): 21458-21472, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265933

RESUMO

We propose dielectric grating-coupled hyperbolic metamaterials as a functional device that shows angular selection of transmitted light and enhanced radiative emission rate. We numerically demonstrate that the surface plasmon polaritons in the hyperbolic metamaterials can be effectively outcoupled to the surrounding space by using gratings and facilitate control of the light transmission in the visible frequency. We confirm that the high density of states and the effect of outcoupled plasmonic modes of the proposed structure lead to the increase of Purcell factor and radiative emission. This work will provide multifunctionalities in sensing and imaging systems that use hyperbolic metamaterials.

15.
Phys Rev Lett ; 126(3): 033901, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543948

RESUMO

We demonstrate phase-matched second-harmonic generation (SHG) from three-dimensional metamaterials consisting of stacked metasurfaces. To achieve phase matching, we utilize a novel mechanism based on phase engineering of the metasurfaces at the interacting wavelengths, facilitating phase-matched SHG in the unconventional backward direction. Stacking up to five metasurfaces,we obtain a phase-matched SHG signal, which scales superlinearly with the number of layers. Our results motivate further investigations to achieve higher conversion efficiencies also with more complex wave fronts.

16.
Sensors (Basel) ; 21(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206760

RESUMO

Chiral materials, which show different optical behaviors when illuminated by left or right circularly polarized light due to broken mirror symmetry, have greatly impacted the field of optical sensing over the past decade. To improve the sensitivity of chiral sensing platforms, enhancing the chiroptical response is necessary. Metasurfaces, which are two-dimensional metamaterials consisting of periodic subwavelength artificial structures, have recently attracted significant attention because of their ability to enhance the chiroptical response by manipulating amplitude, phase, and polarization of electromagnetic fields. Here, we reviewed the fundamentals of chiroptical metasurfaces as well as categorized types of chiroptical metasurfaces by their intrinsic or extrinsic chirality. Finally, we introduced applications of chiral metasurfaces such as multiplexing metaholograms, metalenses, and sensors.

17.
Opt Express ; 28(24): 36756-36770, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379762

RESUMO

Interactions between structured optical fields (SOFs) and meta-atoms have been intensively studied, and stimulated by recent advancements on the generation of SOFs and on the synthesis of exotic meta-atoms. Multipole expansion is an efficient and accurate theoretical framework for studying such problems. In this work, explicit expressions of SOFs and their beam-shape coefficients are provided, and their properties are also briefly discussed; the considered SOFs include Laguerre-Gaussian (LG) beams, tightly-focused LG beams, Bessel beams, and cylindrical vector beams. Using the multipole expansion, selective excitations of multipolar resonances of a sphere is discussed. In addition, angular momentum dichroisms of a chiral sphere and an anisotropically chiral meta-atom are calculated to demonstrate selective excitation of multipoles with the desired order, parity, and orientation using engineered SOFs with angular momentum.

18.
Phys Chem Chem Phys ; 22(4): 2337-2342, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932814

RESUMO

By learning the optimal policy with a double deep Q-learning network (DDQN), we design ultra-broadband, biomimetic, perfect absorbers with various materials, based the structure of a moth's eye. All absorbers achieve over 90% average absorption from 400 to 1600 nm. By training a DDQN with moth-eye structures made up of chromium, we transfer the learned knowledge to other, similar materials to quickly and efficiently find the optimal parameters from the ∼1 billion possible options. The knowledge learned from previous optimisations helps the network to find the best solution for a new material in fewer steps, dramatically increasing the efficiency of finding designs with ultra-broadband absorption.

19.
Sensors (Basel) ; 20(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718085

RESUMO

Metasurfaces have shown promising potential to miniaturize existing bulk optical components thanks to their extraordinary optical properties and ultra-thin, small, and lightweight footprints. However, the absence of proper manufacturing methods has been one of the main obstacles preventing the practical application of metasurfaces and commercialization. Although a variety of fabrication techniques have been used to produce optical metasurfaces, there are still no universal scalable and high-throughput manufacturing methods that meet the criteria for large-scale metasurfaces for device/product-level applications. The fundamentals and recent progress of the large area and high-throughput manufacturing methods are discussed with practical device applications. We systematically classify various top-down scalable patterning techniques for optical metasurfaces: firstly, optical and printing methods are categorized and then their conventional and unconventional (emerging/new) techniques are discussed in detail, respectively. In the end of each section, we also introduce the recent developments of metasurfaces realized by the corresponding fabrication methods.

20.
Angew Chem Int Ed Engl ; 59(24): 9460-9469, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32237185

RESUMO

Interest and challenges remain in designing and synthesizing catalysts with nature-like complexity at few-nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce "nanocatalosomes"-a bio-inspired bilayer-vesicular design of nanoreactor with metallic bilayer shell-in-shell structure, having numerous controllable confined cavities within few-nm interlayer space, customizable with different noble metals. The intershell-confined plasmonically coupled hot-nanospaces within the few-nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by "acceptorless dehydrogenation", "Suzuki-Miyaura cross-coupling" and "alkynyl annulation" affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state-of-the-art Au-nanorod-based plasmonic catalysts. This work paves the way towards next-generation nanoreactors for chemical transformations with solar energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA