Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 101: 214-230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026421

RESUMO

Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.


Assuntos
Artrite Experimental , Neuralgia , Animais , Anticorpos , Colágeno , Gânglios Espinais , Humanos , Lisofosfolipídeos , Camundongos , Neuroglia , Células Receptoras Sensoriais
2.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293074

RESUMO

Metastases are the main cause of death in cancer patients, and platelets are largely known for their contribution in cancer progression. However, targeting platelets is highly challenging given their paramount function in hemostasis. Using a high-throughput screening and platelet-induced breast tumor cell survival (PITCS) assay as endpoint, we identified the widely used anti-asthmatic drugs and cysteinyl leukotriene receptor 1 (CysLT1R) antagonists, zafirlukast and montelukast, as new specific blockers of platelet protumoral action. Here, we show that human MDA-B02 breast cancer cells produce CysLT through mechanisms involving microsomal glutathione-S-transferase 1/2/3 (MGST1/2/3) and that can modulate cancer cell-platelet interactions via platelet-CysLT1R. CysLT1R blockade with zafirlukast decreased platelet aggregation and adhesion on cancer cells and inhibited PITCS, migration, and invasion in vitro. Zafirlukast significantly reduced, by 90%, MDA-B02 cell dissemination to bone in nude mice and reduced by 88% 4T1 spontaneous lung metastasis formation without affecting primary tumor growth. Combined treatment of zafirlukast plus paclitaxel totally inhibited metastasis of 4T1 cells to the lungs. Altogether, our results reveal a novel pathway mediating the crosstalk between cancer cells and platelets and indicate that platelet CysLT1R represents a novel therapeutic target to prevent metastasis without affecting hemostasis.


Assuntos
Antiasmáticos , Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Camundongos Nus , Pulmão , Paclitaxel , Transferases , Glutationa
3.
Blood ; 124(20): 3141-50, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25277122

RESUMO

Autotaxin (ATX), through its lysophospholipase D activity controls physiological levels of lysophosphatidic acid (LPA) in blood. ATX is overexpressed in multiple types of cancers, and together with LPA generated during platelet activation promotes skeletal metastasis of breast cancer. However, the pathophysiological sequelae of regulated interactions between circulating LPA, ATX, and platelets remain undefined in cancer. In this study, we show that ATX is stored in α-granules of resting human platelets and released upon tumor cell-induced platelet aggregation, leading to the production of LPA. Our in vitro and in vivo experiments using human breast cancer cells that do not express ATX (MDA-MB-231 and MDA-B02) demonstrate that nontumoral ATX controls the early stage of bone colonization by tumor cells. Moreover, expression of a dominant negative integrin αvß3-Δ744 or treatment with the anti-human αvß3 monoclonal antibody LM609, completely abolished binding of ATX to tumor cells, demonstrating the requirement of a fully active integrin αvß3 in this process. The present results establish a new mechanism for platelet contribution to LPA-dependent metastasis of breast cancer cells, and demonstrate the therapeutic potential of disrupting the binding of nontumor-derived ATX with the tumor cells for the prevention of metastasis.


Assuntos
Plaquetas/imunologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Integrina alfaVbeta3/imunologia , Diester Fosfórico Hidrolases/imunologia , Animais , Plaquetas/patologia , Neoplasias Ósseas/sangue , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Osso e Ossos/imunologia , Osso e Ossos/patologia , Mama/imunologia , Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Lisofosfolipídeos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/imunologia , Invasividade Neoplásica/patologia , Ativação Plaquetária
4.
J Biol Chem ; 289(10): 6551-6564, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24429286

RESUMO

Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1-6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1(-/-) mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1(-/-) mice but not in Lpar2(-/-) and Lpar3(-/-) animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1(-/-) osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP(+) osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss.


Assuntos
Reabsorção Óssea/patologia , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/patologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Animais , Células da Medula Óssea/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Feminino , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ácidos Oleicos/farmacologia , Organofosfatos/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética
5.
J Exp Clin Cancer Res ; 37(1): 209, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165893

RESUMO

BACKGROUND: Angiogenesis has become an attractive target for cancer therapy. However, despite the initial success of anti-VEGF (Vascular endothelial growth factor) therapies, the overall survival appears only modestly improved and resistance to therapy often develops. Other anti-angiogenic targets are thus urgently needed. The predominant expression of the type I BMP (bone morphogenetic protein) receptor ALK1 (activin receptor-like kinase 1) in endothelial cells makes it an attractive target, and phase I/II trials are currently being conducted. ALK1 binds with strong affinity to two ligands that belong to the TGF-ß family, BMP9 and BMP10. In the present work, we addressed their specific roles in tumor angiogenesis, cancer development and metastasis in a mammary cancer model. METHODS: For this, we used knockout (KO) mice for BMP9 (constitutive Gdf2-deficient), for BMP10 (inducible Bmp10-deficient) and double KO mice (Gdf2 and Bmp10) in a syngeneic immunocompetent orthotopic mouse model of spontaneous metastatic breast cancer (E0771). RESULTS: Our studies demonstrate a specific role for BMP9 in the E0771 mammary carcinoma model. Gdf2 deletion increased tumor growth while inhibiting vessel maturation and tumor perfusion. Gdf2 deletion also increased the number and the mean size of lung metastases. On the other hand, Bmp10 deletion did not significantly affect the E0771 mammary model and the double deletion (Gdf2 and Bmp10) did not lead to a stronger phenotype than the single Gdf2 deletion. CONCLUSIONS: Altogether, our data show that in a tumor environment BMP9 and BMP10 play different roles and thus blocking their shared receptor ALK1 is maybe not appropriate. Indeed, BMP9, but not BMP10, acts as a quiescence factor on tumor growth, lung metastasis and vessel normalization. Our results also support that activating rather than blocking the BMP9 pathway could be a new strategy for tumor vessel normalization in order to treat breast cancer.


Assuntos
Receptores de Ativinas Tipo I/genética , Proteínas Morfogenéticas Ósseas/genética , Neoplasias da Mama/genética , Fator 2 de Diferenciação de Crescimento/genética , Neoplasias Mamárias Animais/genética , Receptores de Activinas Tipo II , Animais , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Metástase Neoplásica , Transdução de Sinais
6.
Oncotarget ; 6(24): 20604-20, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26098771

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid promoting cancer metastasis. LPA activates a series of six G protein-coupled receptors (LPA1-6). While blockage of LPA1in vivo inhibits breast carcinoma metastasis, down-stream genes mediating LPA-induced metastasis have not been yet identified. Herein we showed by analyzing publicly available expression data from 1488 human primary breast tumors that the gene encoding the transcription factor ZEB1 was the most correlated with LPAR1 encoding LPA1. This correlation was most prominent in basal primary breast carcinomas and restricted to cell lines of basal subtypes. Functional experiments in three different basal cell lines revealed that LPA-induced ZEB1 expression was regulated by the LPA1/Phosphatidylinositol-3-Kinase (Pi3K) axis. DNA microarray and real-time PCR analyses further demonstrated that LPA up-regulated the oncomiR miR-21 through an LPA1/Pi3K/ZEB1-dependent mechanism. Strikingly, treatment with a mirVana miR-21 inhibitor, or silencing LPA1 or ZEB1 completely blocked LPA-induced cell migration in vitro, invasion and tumor cell bone colonization in vivo, which can be restored with a mirVana miR-21 mimic. Finally, high LPAR1 expression in basal breast tumors predicted worse lung-metastasis-free survival. Collectively, our results elucidate a new molecular pathway driving LPA-induced metastasis, thus underscoring the therapeutic potential of targeting LPA1 in patients with basal breast carcinomas.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Metástase Neoplásica , Receptores de Ácidos Lisofosfatídicos/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transfecção , Homeobox 1 de Ligação a E-box em Dedo de Zinco
7.
PLoS One ; 9(5): e97771, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24828490

RESUMO

Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA1₋6). LPA receptor type 1 (LPA1) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA1 is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA1 is known to induce IL-6 and IL-8 secretion, as also do LPA2 and LPA3. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA1,2,6; MDA-MB-231: LPA1,2; MCF-7: LPA2,6). Among the set of genes upregulated by LPA only in LPA1-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA1-3 antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA1 (MDA-B02/LPA1) and downregulated for LPA1 (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA1 and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA1. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA1 activation state in patients receiving anti-LPA1 therapies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Isoxazóis/farmacologia , Lisofosfolipídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Propionatos/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Oncol ; 40(4): 1133-41, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22200658

RESUMO

Metastasis is the main cause of death for cancer patients. Targeting factors that control metastasis formation is a major challenge for clinicians. Lysophosphatidic acid (LPA) is a bioactive phospholipid involved in cancer. LPA activates at least six independent G protein-coupled receptors (LPA1-6). Tumor cells frequently co-express multiple LPA receptors, puzzling the contribution of each one to cancer progression. All three receptors, LPA1, LPA2 and LPA3, act as oncogenes and prometastatic factors in the mouse mammary gland. The competitive inhibitor of LPA1 and LPA3 receptors, Ki16425, inhibits efficiently breast cancer bone metastases in animal models. We showed here that Debio 0719, which corresponds to the R-stereoisomer of Ki16425 exhibited highest antagonist activities at LPA1 (IC50=60 nM) and LPA3 (IC50=660 nM) than Ki16425 [IC50=130 nM (LPA1); IC50=2.3 µM (LPA3)]. In vitro, Debio 0719, inhibited LPA-dependent invasion of the 4T1 mouse mammary cancer cells. In vivo, early but not late administration of Debio 0719 (50 mg/kg p.o. twice daily) to BALB/c mice during the course of orthotopic 4T1 primary tumor growth reduced the number of spontaneously disseminated tumor cells to bone and lungs without affecting the growth of primary tumors and tumor-induced angiogenesis. We found that increased LPA1 mRNA expression in primary tumors of breast cancer patients correlated significantly with their positive lymph node status (p<0.001). Altogether, our results suggest that LPA1 controls early events of metastasis independently of cell proliferation and angiogenesis. Therefore, targeting this receptor with Debio 0719 has a high therapeutic potential against metastasis formation for breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Neoplasias da Mama/irrigação sanguínea , Cálcio/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Metástase Linfática , Masculino , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais
9.
PLoS One ; 5(3): e9741, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20305819

RESUMO

BACKGROUND: Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorptive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to immunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis. CONCLUSION/SIGNIFICANCE: Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.


Assuntos
Neoplasias Ósseas/patologia , Osso e Ossos/patologia , Lisofosfolipídeos/química , Complexos Multienzimáticos/química , Osteoclastos/química , Fosfodiesterase I/química , Pirofosfatases/química , Animais , Plaquetas/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Diester Fosfórico Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA