Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 21(5): 578-587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32231298

RESUMO

The pool of beta cell-specific CD8+ T cells in type 1 diabetes (T1D) sustains an autoreactive potential despite having access to a constant source of antigen. To investigate the long-lived nature of these cells, we established a DNA methylation-based T cell 'multipotency index' and found that beta cell-specific CD8+ T cells retained a stem-like epigenetic multipotency score. Single-cell assay for transposase-accessible chromatin using sequencing confirmed the coexistence of naive and effector-associated epigenetic programs in individual beta cell-specific CD8+ T cells. Assessment of beta cell-specific CD8+ T cell anatomical distribution and the establishment of stem-associated epigenetic programs revealed that self-reactive CD8+ T cells isolated from murine lymphoid tissue retained developmentally plastic phenotypic and epigenetic profiles relative to the same cells isolated from the pancreas. Collectively, these data provide new insight into the longevity of beta cell-specific CD8+ T cell responses and document the use of this methylation-based multipotency index for investigating human and mouse CD8+ T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Células-Tronco Pluripotentes/fisiologia , Adolescente , Adulto , Animais , Autoantígenos/imunologia , Plasticidade Celular , Células Cultivadas , Metilação de DNA , Epigênese Genética , Feminino , Citometria de Fluxo , Humanos , Memória Imunológica , Masculino , Camundongos , Análise de Célula Única , Adulto Jovem
2.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578289

RESUMO

During antiretroviral therapy (ART), human immunodeficiency virus type 1 (HIV-1) persists as a latent reservoir in CD4+ T cell subsets in central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells. We have identified differences in mechanisms underlying latency and responses to latency-reversing agents (LRAs) in ex vivo CD4+ memory T cells from virally suppressed HIV-infected individuals and in an in vitro primary cell model of HIV-1 latency. Our ex vivo and in vitro results demonstrate the association of transcriptional pathways of T cell differentiation, acquisition of effector function, and cell cycle entry in response to LRAs. Analyses of memory cell subsets showed that effector memory pathways and cell surface markers of activation and proliferation in the TEM subset are predictive of higher frequencies of cells carrying an inducible reservoir. Transcriptional profiling also demonstrated that the epigenetic machinery (known to control latency and reactivation) in the TEM subset is associated with frequencies of cells with HIV-integrated DNA and inducible HIV multispliced RNA. TCM cells were triggered to differentiate into TEM cells when they were exposed to LRAs, and this increase of TEM subset frequencies upon LRA stimulation was positively associated with higher numbers of p24+ cells. Together, these data highlight differences in underlying biological latency control in different memory CD4+ T cell subsets which harbor latent HIV in vivo and support a role for differentiation into a TEM phenotype in facilitating latency reversal.IMPORTANCE By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos/virologia , Diferenciação Celular , Infecções por HIV/virologia , HIV-1/fisiologia , Fenótipo , Latência Viral/fisiologia , DNA Viral/genética , Expressão Gênica , Humanos , Memória Imunológica/fisiologia , Subpopulações de Linfócitos T/virologia
3.
PLoS Pathog ; 13(12): e1006740, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29267399

RESUMO

Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15)-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15) ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , Inibidores de Janus Quinases/farmacologia , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Nitrilas , Piperidinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Replicação Viral/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 170: 314-323, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530184

RESUMO

Life expectancy is increasing worldwide. Lung aging is a process marked by changes in multiple morphological, physiological and age-related biomarkers (e.g., sirtuins) and is influenced by external factors, such as air pollution. Hence, the elderly are considered more vulnerable to the air pollution hazards. We hypothesized that diesel exhaust (DE) exposure intensifies changes in lung inflammatory and structural parameters in aging subjects. Two- and fifteen-month-old mice were exposed to DE for 30 days. Lung function was measured using the forced oscillation method. The inflammatory profile was evaluated in the bronchoalveolar lavage fluid (BALF) and blood, and lung volumes were estimated by stereology. Antioxidant enzyme activity was evaluated by spectrophotometry, sirtuin 1 (SIRT1), sirtuin 2 (SIRT2) and sirtuin 6 (SIRT6) expression was assessed by reverse transcription polymerase chain reaction (RT-PCR), and levels of the sirtuin proteins were evaluated by immunohistochemical staining in lung tissues. Older mice presented decreased pulmonary resistance and elastance, increased macrophage infiltration and decreased tumor necrosis factor (TNF) and interleukin 10 (IL-10) levels in the BALF, reduced activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR), and increased activity glutathione S-transferase (GST); increased lung volumes with decreased elastic fiber and increased airway collagen content. SIRT1 gene expression was decreased in older animals, but protein levels were increased. DE exposure increased macrophage infiltration and oxidative stress in the lungs of animals of both ages. SIRT6 gene expression was decreased by DE exposure, with increased protein levels. In older animals, DE affected lung structure and collagen content. Lung aging features, such as decreased antioxidant reserves, lower IL-10 expression, and decreased SIRT1 levels may predispose subjects to exacerbated responses after DE exposure. Our data support the hypothesis that strategies designed to reduce ambient air pollution are an important step towards healthy aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Emissões de Veículos/toxicidade , Envelhecimento/imunologia , Envelhecimento/patologia , Poluentes Atmosféricos/análise , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/análise , Pneumonia/imunologia , Pneumonia/patologia , Testes de Função Respiratória , Sirtuínas/genética , Emissões de Veículos/análise
5.
Am J Physiol Regul Integr Comp Physiol ; 310(8): R697-706, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26791829

RESUMO

We tested the hypothesis that an increase in the anti-inflammatory cholinergic pathway, when induced by pyridostigmine (PY), may modulate subtypes of lymphocytes (CD4+, CD8+, FOXP3+) and macrophages (M1/M2) soon after myocardial infarction (MI) in rats. Wistar rats, randomly allocated to receive PY (40 mg·kg(-1)·day(-1)) in drinking water or to stay without treatment, were followed for 4 days and then were subjected to ligation of the left coronary artery. The groups-denominated as the pyridostigmine-treated infarcted (IP) and infarcted control (I) groups-were submitted to euthanasia 3 days after MI; the heart was removed for immunohistochemistry, and the peripheral blood and spleen were collected for flow cytometry analysis. Noninfarcted and untreated rats were used as controls (C Group). Echocardiographic measurements were registered on the second day after MI, and heart rate variability was measured on the third day after MI. The infarcted groups had similar MI areas, degrees of systolic dysfunction, blood pressures, and heart rates. Compared with the I Group, the IP Group showed a significant higher parasympathetic modulation and a lower sympathetic modulation, which were associated with a small, but significant, increase in diastolic function. The IP Group showed a significant increase in M2 macrophages and FOXP3(+)cells in the infarcted and peri-infarcted areas, a significantly higher frequency of circulating Treg cells (CD4(+)CD25(+)FOXP3(+)), and a less extreme decrease in conventional T cells (CD25(+)FOXP3(-)) compared with the I Group. Therefore, increasing cholinergic modulation with PY induces greater anti-inflammatory cell recruitment soon after MY in rats.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Macrófagos/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/imunologia , Brometo de Piridostigmina/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Ratos Endogâmicos WKY , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
6.
Mem Inst Oswaldo Cruz ; 110(8): 1010-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26602876

RESUMO

T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , HIV-1/imunologia , Imunidade Celular/imunologia , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Sequência Conservada/imunologia , ELISPOT , Feminino , Citometria de Fluxo , Vetores Genéticos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Infecções por HIV/prevenção & controle , Antígenos HLA-DR/imunologia , Humanos , Interferon gama/efeitos dos fármacos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Plasmídeos , Ligação Proteica/imunologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37399354

RESUMO

BACKGROUND: Efforts to modulate the function of tumor-associated myeloid cell are underway to overcome the challenges in immunotherapy and find a cure. One potential therapeutic target is integrin CD11b, which can be used to modulate the myeloid-derived cells and induce tumor-reactive T-cell responses. However, CD11b can bind to multiple different ligands, leading to various myeloid cell functions such as adhesion, migration, phagocytosis, and proliferation. This has created a major challenge in understanding how CD11b converts the differences in the receptor-ligand binding into subsequent signaling responses and using this information for therapeutic development. METHODS: This study aimed to investigate the antitumor effect of a carbohydrate ligand, named BG34-200, which modulates the CD11b+ cells. We have applied peptide microarrays, multiparameter FACS (fluorescence-activated cell analysis) analysis, cellular/molecular immunological technology, advanced microscopic imaging, and transgenic mouse models of solid cancers, to study the interaction between BG34-200 carbohydrate ligand and CD11b protein and the resulting immunological changes in the context of solid cancers, including osteosarcoma, advanced melanoma, and pancreatic ductal adenocarcinoma (PDAC). RESULTS: Our results show that BG34-200 can bind directly to the activated CD11b on its I (or A) domain, at previously unreported peptide residues, in a multisite and multivalent manner. This engagement significantly impacts the biological function of tumor-associated inflammatory monocytes (TAIMs) in osteosarcoma, advanced melanoma, and PDAC backgrounds. Importantly, we observed that the BG34-200-CD11b engagement triggered endocytosis of the binding complexes in TAIMs, which induced intracellular F-actin cytoskeletal rearrangement, effective phagocytosis, and intrinsic ICAM-1 (intercellular adhesion molecule I) clustering. These structural biological changes resulted in the differentiation in TAIMs into monocyte-derived dendritic cells, which play a crucial role in T-cell activation in the tumor microenvironment. CONCLUSIONS: Our research has advanced the current understanding of the molecular basis of CD11b activation in solid cancers, revealing how it converts the differences in BG34 carbohydrate ligands into immune signaling responses. These findings could pave the way for the development of safe and novel BG34-200-based therapies that modulate myeloid-derived cell functions, thereby enhancing immunotherapy for solid cancers.


Assuntos
Melanoma , Osteossarcoma , Neoplasias Pancreáticas , Camundongos , Animais , Ligantes , Células Mieloides , Imunoterapia , Diferenciação Celular , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Transl Res ; 241: 83-95, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34871809

RESUMO

Patients with cancers have been severely affected by the COVID-19 pandemic. This is highlighted by the adverse outcomes in cancer patients with COVID-19 as well as by the impact of the COVID-19 pandemic on cancer care. Patients with cancer constitute a heterogeneous population that exhibits distinct mechanisms of immune dysfunction, associated with distinct systemic features of hot (T-cell-inflamed/infiltrated) and cold (Non-T-cell-inflamed and/or infiltrated) tumors. The former show hyper immune activated cells and a highly inflammatory environment while, contrastingly, the latter show the profile of a senescent and/or quiescent immune system. Thus, the evolution of SARS-CoV-2 infection in different types of cancers can show distinct trajectories which could lead to a variety of clinical and pathophysiological outcomes. The altered immunological environment including cytokines that characterizes hot and cold tumors will lead to different mechanisms of immune dysfunction, which will result in downstream effects on the course of SARS-CoV-2 infection. This review will focus on defining the known contributions of soluble pro- and anti-inflammatory mediators on immune function including altered T-cells and B-cells responses and as well on how these factors modulate the expression of SARS-CoV-2 receptor ACE2, TMPRSS2 expression, and lymph node fibrosis in cancer patients. We will propose immune mechanisms that underlie the distinct courses of SARS-CoV-2 infection in cancer patients and impact on the success of immune based therapies that have significantly improved cancer outcomes. Better understanding of the immune mechanisms prevalent in cancer patients that are associated to the outcomes of SARS-CoV-2 infection will help to identify the high-risk cancer patients and develop immune-based approaches to prevent significant adverse outcomes by targeting these pathways.


Assuntos
COVID-19/complicações , Neoplasias/imunologia , COVID-19/imunologia , COVID-19/virologia , Humanos , Avaliação de Resultados em Cuidados de Saúde , SARS-CoV-2/isolamento & purificação
9.
Front Immunol ; 13: 867937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371104

RESUMO

Despite advances in antiretroviral therapy, chronic immune activation continues to be observed among individuals with well-controlled HIV viral loads, and is associated with non-AIDS defining morbidities among people living with HIV. Alcohol use disorder impacts a significant proportion of individuals living with HIV, and alcohol exposure is known to damage the intestinal epithelium which may increase translocation of pathogens and their molecular products, driving systemic immune activation and dysregulation. The aim of this study was to determine if adults living with HIV with well-controlled viral loads, who also suffer from alcohol use disorder with and without hepatitis C virus co-infection (n=23), exhibit evidence of advanced systemic immune activation, intestinal damage, and microbial translocation, as compared to adults living with HIV who are not exposed to chronic alcohol or other substances of abuse (n=29). The impact of a 1-month intervention to treat alcohol-use disorder was also examined. Alcohol-use disorder was associated with evidence of advanced innate immune activation, alterations in monocyte phenotype including increased expression of Toll-like receptor 4, increased burden of stimulatory ligands for Toll-like receptor 4, and alterations in plasma cytokine signature, most notably elevations in soluble CD40 ligand and transforming growth factor beta. Alcohol-associated immune activation was more pronounced among individuals with hepatitis C virus co-infection. Although the 1-month intervention to treat alcohol use disorder did not result in significant reductions in the interrogated indicators of immune activation, our findings suggest that chronic alcohol exposure is a major modifiable risk factor for chronic immune activation and dysregulation among people-living with HIV.


Assuntos
Alcoolismo , Coinfecção , Infecções por HIV , Hepatite C , Alcoolismo/complicações , Alcoolismo/metabolismo , Citocinas/metabolismo , Hepacivirus/metabolismo , Humanos , Imunidade Inata , Monócitos , Fenótipo , Receptor 4 Toll-Like/metabolismo
10.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104248

RESUMO

Type I IFNs (TI-IFNs) drive immune effector functions during acute viral infections and regulate cell cycling and systemic metabolism. That said, chronic TI-IFN signaling in the context of HIV infection treated with antiretroviral therapy (ART) also facilitates viral persistence, in part by promoting immunosuppressive responses and CD8+ T cell exhaustion. To determine whether inhibition of IFN-α might provide benefit in the setting of chronic, ART-treated SIV infection of rhesus macaques, we administered an anti-IFN-α antibody followed by an analytical treatment interruption (ATI). IFN-α blockade was well-tolerated and associated with lower expression of TI-IFN-inducible genes (including those that are antiviral) and reduced tissue viral DNA (vDNA). The reduction in vDNA was further accompanied by higher innate proinflammatory plasma cytokines, expression of monocyte activation genes, IL-12-induced effector CD8+ T cell genes, increased heme/metabolic activity, and lower plasma TGF-ß levels. Upon ATI, SIV-infected, ART-suppressed nonhuman primates treated with anti-IFN-α displayed lower levels of weight loss and improved erythroid function relative to untreated controls. Overall, these data demonstrated that IFN-α blockade during ART-treated SIV infection was safe and associated with the induction of immune/erythroid pathways that reduced viral persistence during ART while mitigating the weight loss and anemia that typically ensue after ART interruption.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , DNA Viral , Infecções por HIV/tratamento farmacológico , Imunidade , Interferon-alfa , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Redução de Peso
11.
Vaccine ; 40(2): 239-246, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34961636

RESUMO

Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4+and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7-11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.


Assuntos
Vacinas contra a AIDS , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vacinas contra a AIDS/imunologia , Animais , Genes MHC da Classe II , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
12.
Curr Opin HIV AIDS ; 16(4): 215-222, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039845

RESUMO

PURPOSE OF REVIEW: People living with HIV who fail to fully reconstitute CD4+T cells after combination antiretroviral therapy therapy (i.e. immune nonresponders or INRs) have higher frequencies of exhausted T cells are enriched in a small pool of memory T cells where HIV persists and have an abundance of plasma metabolites of bacterial and host origins. Here, we review the current understanding of critical features of T cell exhaustion associated with HIV persistence; we propose to develop novel strategies to reinvigorate the effector function of exhausted T cells with the aim of purging the HIV reservoir. RECENT FINDINGS: We and others have recently reported the role of microbiota and metabolites in regulating T cell homeostasis, effector function, and senescence. We have observed that bacteria of the Firmicute phyla (specifically members of the genus Lactobacilli), associated metabolites (ß-hydroxybutyrate family), and bile acids can promote regulatory T cell differentiation in INRs with a senescent peripheral blood gene expression profile. SUMMARY: The cross-talk between immune cells and gut microbes at the intestinal mucosa (a major effector site of the mucosal immune response), regulates the priming, proliferation, and differentiation of local and distant immune responses. This cross-talk via the production of major metabolite families (like serum amyloid A, polysaccharide A, and aryl hydrocarbon receptor ligands) plays a key role in maintaining immune homeostasis. HIV infection/persistence leads to gut dysbiosis/microbial translocation, resulting in the local and systemic dissemination of microbes. The ensuing increase in immune cell-microbiome (including pathogens) interaction promotes heightened inflammatory responses and is implicated in regulating innate/adaptive immune effector differentiation cascades that drive HIV persistence. The exact role of the microbiota and associated metabolites in regulating T cell- mediated effector functions that can restrict HIV persistence continue to be the subject of on-going studies and are reviewed here.


Assuntos
Infecções por HIV , Microbiota , Linfócitos T CD4-Positivos , Disbiose , Humanos , Mucosa Intestinal
13.
Leukemia ; 35(10): 2799-2812, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34244611

RESUMO

The prognosis of most patients with AML is poor due to frequent disease relapse. The cause of relapse is thought to be from the persistence of leukemia initiating cells (LIC's) following treatment. Here we assessed RNA based changes in LICs from matched patient diagnosis and relapse samples using single-cell RNA sequencing. Previous studies on AML progression have focused on genetic changes at the DNA mutation level mostly in bulk AML cells and demonstrated the existence of DNA clonal evolution. Here we identified in LICs that the phenomenon of RNA clonal evolution occurs during AML progression. Despite the presence of vast transcriptional heterogeneity at the single cell level, pathway analysis identified common signaling networks involving metabolism, apoptosis and chemokine signaling that evolved during AML progression and become a signature of relapse samples. A subset of this gene signature was validated at the protein level in LICs by flow cytometry from an independent AML cohort and functional studies were performed to demonstrate co-targeting BCL2 and CXCR4 signaling may help overcome therapeutic challenges with AML heterogeneity. It is hoped this work will facilitate a greater understanding of AML relapse leading to improved prognostic biomarkers and therapeutic strategies to target LIC's.


Assuntos
Leucemia Mieloide Aguda/genética , RNA/genética , Idoso , Evolução Clonal/genética , Progressão da Doença , Feminino , Humanos , Lactente , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Prognóstico , Recidiva , Análise de Sequência de RNA/métodos , Transdução de Sinais/genética , Sequenciamento do Exoma/métodos
14.
Artigo em Inglês | MEDLINE | ID: mdl-30867670

RESUMO

Leishmaniasis is an infectious disease caused by a protozoan belonging to Leishmania genus. Different clinical outcomes can be observed depending on the parasite species and patient's health condition. The outcomes can range from single cutaneous lesions to lethal visceral form. The treatment of all forms of leishmaniasis is based on pentavalent antimonials, and, in some cases, the second-line drug, amphotericin B, is used. Beside the toxicity of both classes of drugs, in some areas of the world, parasites are resistant to antimonial. These detrimental features make fundamental the discovery and characterization of new drugs or plant extracts with leishmanicidal effects. Brazil is a well-known country for its biodiversity. Additionally, the common knowledge inherited for generations in small villages makes Brazil a source of new information and resources for the discovery and development of new drugs. Based on ethnopharmacology, elderlies were interviewed about plants they commonly used for skin diseases and infections. Five native plants from Atlantic forest were indicated; EtOH and n-hexane extracts were prepared with the vegetative organs of the plants and assayed against promastigote and amastigote forms of L. (L.) amazonensis. The major molecules of each extract were detected using qualitative nuclear magnetic resonance. Among all tested extracts, the n-hexane extract from the leave of Eugenia uniflora (Myrtaceae), enriched in myricitrin and quercitrin flavonoids, was the most effective against L. (L.) amazonensis amastigotes. This data supports the ethnopharmacology approach as a successful tool for the discovery of new drugs with leishmanicidal effects.

15.
Nat Commun ; 10(1): 863, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787294

RESUMO

The RV144 vaccine trial showed reduced risk of HIV-1 acquisition by 31.2%, although mechanisms that led to protection remain poorly understood. Here we identify transcriptional correlates for reduced HIV-1 acquisition after vaccination. We assess the transcriptomic profile of blood collected from 223 participants and 40 placebo recipients. Pathway-level analysis of HIV-1 negative vaccinees reveals that type I interferons that activate the IRF7 antiviral program and type II interferon-stimulated genes implicated in antigen-presentation are both associated with a reduced risk of HIV-1 acquisition. In contrast, genes upstream and downstream of NF-κB, mTORC1 and host genes required for viral infection are associated with an increased risk of HIV-1 acquisition among vaccinees and placebo recipients, defining a vaccine independent association with HIV-1 acquisition. Our transcriptomic analysis of RV144 trial samples identifies IRF7 as a mediator of protection and the activation of mTORC1 as a correlate of the risk of HIV-1 acquisition.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/imunologia , Interferon gama/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Imunização , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , NF-kappa B/metabolismo , Placebos/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
16.
Curr Top Med Chem ; 18(27): 2338-2346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30569856

RESUMO

Leishmaniasis is an infectious disease caused by protozoal parasites belonging to Leishmania genus. Different clinical outcomes can be observed depending on the parasite species and health condition of patients. It can range from single cutaneous lesion until deadly visceral form. The treatment of all forms of leishmaniasis is based on pentavalent antimonials, and in some cases, the second-line drug, amphotericin B is used. Beside the toxicity of both drugs, parasites can be resistant to antimonial in some areas of the world. This makes fundamental the characterization of new drugs with leishmanicidal effect. Thus, the aim of the present work was to study the leishmanicidal activity of drugs able to interfere with ergosterol pathway (fenticonazole, tioconazole, nystatin, rosuvastatin and voriconazole) against promastigote and amastigote forms of L.(L.) amazonensis, L.(V.) braziliensis and L.(L.) infantum, and its impact on morphological and physiological changes in L.(L.) amazonensis or in host macrophages. We observed that fenticonazole, tioconazole and nystatin drugs eliminated promastigote and intracellular amastigotes, being fenticonazole and nystatin the most selective towards amastigote forms. Rosuvastatin and voriconazole did not present activity against amastigote forms of Leishmania sp. In addition, the drugs with leishmanicidal activity interfered with parasite mitochondrion. Although drugs did not stimulate NO and H2O2, specially fenticonazole was able to alkalize infected host macrophages. These results suggest well established and non-toxic antifungal drugs can be repurposed and used in leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Imidazóis/farmacologia , Leishmania/efeitos dos fármacos , Nistatina/farmacologia , Antiprotozoários/química , Imidazóis/química , Nistatina/química , Testes de Sensibilidade Parasitária , Especificidade da Espécie
17.
Artigo em Inglês | MEDLINE | ID: mdl-30181736

RESUMO

BACKGROUND: Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. METHODS: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. RESULTS: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. CONCLUSIONS: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.

18.
Front Immunol ; 9: 895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967602

RESUMO

Effective antiretroviral therapy (ART) has prevented the progression to AIDS and reduced HIV-related morbidities and mortality for the majority of infected individuals. However, a lifelong administration of ART is necessary, placing an inordinate burden on individuals and public health systems. Therefore, discovering therapeutic regimens able to eradicate or functionally cure HIV infection is of great importance. ART interruption leads to viral rebound highlighting the establishment and maintenance of a latent viral reservoir compartment even under long-term treatment. Follicular helper CD4 T cells (TFH) have been reported as a major cell compartment contributing to viral persistence, consequent to their susceptibility to infection and ability to release replication-competent new virions. Here, we discuss the molecular profiles and potential mechanisms that support the role of TFH cells as one of the major HIV reservoirs.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/imunologia , HIV-1/fisiologia , Linfonodos/virologia , Linfócitos T Auxiliares-Indutores/virologia , Antirretrovirais/farmacologia , Progressão da Doença , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Curr Opin Virol ; 19: 85-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27497036

RESUMO

To combat the diverse pathogens that infect humans, the immune system has evolved complex and diverse transcriptional signatures, which drive differential cellular and humoral responses. These signatures are induced by immune receptor sensing of pathogens and by cytokines produced at the earliest onset of infection. The specific nature of immune activation is as critical to pathogen clearance as the induction of an adaptive immune response. This is particularly true for HIV, which has developed numerous immune evasion mechanisms. In this review, we will highlight recent findings that show the differential role for early innate immune responses in promoting infection versus clearance and demonstrate the need for continued research on these pathways for development of effective HIV treatments.


Assuntos
Infecções por HIV/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Inflamassomos/imunologia , Interferons/imunologia , Citocinas/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , Humanos , Evasão da Resposta Imune , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA