RESUMO
Esophageal cancer (EC) is one of the most incident and lethal tumors worldwide. Although surgical resection is an important approach in EC treatment, late diagnosis, metastasis and recurrence after surgery have led to the management of adjuvant and neoadjuvant therapies over the past few decades. In this scenario, 5-fluorouracil (5-FU) and cisplatin (CISP), and more recently paclitaxel (PTX) and carboplatin (CBP), have been traditionally used in EC treatment. However, chemoresistance to these agents along EC therapeutic management represents the main obstacle to successfully treat this malignancy. In this sense, despite the fact that most of chemotherapy drugs were discovered several decades ago, in many cases, including EC, they still represent the most affordable and widely employed treatment approach for these tumors. Therefore, this review summarizes the main mechanisms through which the response to the most widely chemotherapeutic agents used in EC treatment is impaired, such as drug metabolism, apoptosis resistance, cancer stem cells (CSCs), cell cycle, autophagy, energetic metabolism deregulation, tumor microenvironment and epigenetic modifications.
Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Mutação , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Carboplatina/uso terapêutico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Fluoruracila/uso terapêutico , Humanos , Terapia de Alvo Molecular/métodos , Paclitaxel/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genéticaRESUMO
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas HMGA/metabolismo , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Proteínas HMGA/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genéticaRESUMO
Squamous cell carcinoma is the main histological tumor type in the upper aerodigestive tract (UADT), including the esophagus (ESCC) and the head and neck sites, as well as the oral cavity (OCSCC), larynx (LSCC) and oropharynx (OPSCC). These tumors are induced by alcohol and tobacco exposure, with the exception of a subgroup of OPSCC linked to human papillomavirus (HPV) infection. Few genes are frequently mutated in UADT tumors, pointing to other molecular mechanisms being involved during carcinogenesis. The F-box and leucine-rich repeat protein 7 (FBXL7) is a potential tumor-suppressing gene, one that is frequently hypermethylated in pancreatic cancer and where the encoded protein promotes the degradation of AURKA, BIRC5 and c-SRC. Thus, the aim of this study was to evaluate the methylation and expression profile of FBXL7 in the UADT and the gene's association with the clinical, etiological and pathological characteristics of patients, as well as the expression of its degradation targets. Here we show that the FBXL7 gene's body is hypomethylated in the UADT, independently of histology, but not in virus-associated tumors. FBXL7 body methylation and gene expression levels were correlated in the ESCC, LSCC, OCSCC and OPSCC. Immunohistochemistry analysis showed that FBXL7 protein levels are not correlated with the levels of its degradation targets, AURKA and BIRC5, in the UADT. The high discriminatory potential of FBXL7 body hypomethylation between non-tumor and tumor tissues makes it a promising biomarker.
Assuntos
Carcinoma de Células Escamosas , Proteínas F-Box/metabolismo , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Aurora Quinase A/genética , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/genética , Humanos , Infecções por Papillomavirus/complicações , Sistema Respiratório/patologiaRESUMO
AIMS: Malignant tumours from the upper aerodigestive tract are grouped collectively in the class of head and neck squamous cell carcinoma (HNSCC). The head and neck tumours were responsible for more than 500 000 cancer cases in 2012, accounting for the sixth highest incidence rate and mortality worldwide among all tumour types. Laryngeal squamous cell carcinoma (LSCC) possesses the second highest incidence rate among all HNSCC. Despite significant advances in surgery and radiotherapy during the last few decades, no treatment has been shown to achieve a satisfactory therapeutic outcome and the mortality rate of LSCC is still high, with a 5-year survival rate of 64%. Therefore, further investigations are required to identify the pathogenesis of LSCC. METHODS AND RESULTS: In order to search for new LSCC biomarkers, we have analysed the expression of the HMGA family members, HMGA1 and HMGA2, by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. HMGA proteins are usually absent in the healthy adult tissues. In contrast, their constitutive expression is a feature of several neoplasias, being associated with a highly malignant phenotype and reduced survival. Here, we report HMGA2 overexpression in larynx carcinomas. Conversely, HMGA1 does not show any differences in its expression between normal and carcinoma tissues. Interestingly, HMGA2 overexpression appears associated with that of two HMGA1-pseudogenes, HMGA1P6 and HMGA1P7, acting as a sponge for HMGA1- and HMGA2-targeting microRNAs and involved in several human cancers. CONCLUSIONS: Therefore, HMGA2 overexpression appears to be a strong feature of larynx carcinoma, supporting its detection as a valid tool for the diagnosis of these malignancies.
Assuntos
Carcinoma/genética , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a/genética , Proteína HMGA2/genética , Neoplasias Laríngeas/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Carcinoma/patologia , Feminino , Proteína HMGA1a/metabolismo , Proteína HMGA2/metabolismo , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Laringe/metabolismo , Laringe/patologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-IdadeRESUMO
Malignancies of the central nervous system include primary brain tumors and brain metastases, the latter being the major cause of intracranial neoplasms in adults. Although prostate cancer (PCa) brain metastases are not the most common source, recent data show that the relevance of prostate cancer brain metastases (PCBM) cannot be neglected. In this review, we focus on the molecular repertory as well as on the phenotypical similarities between PCBM and primary PCa, such as the cellular evolution and the maintenance of androgen-receptor expression. Moreover, the simultaneous occurrence of PCBM with other PCa metastatic sites and the significance of the clinical heterogeneity of the disease are also discussed. In addition, a potential relationship between the heterogeneous behavior exhibited by PCBM and the co-occurrence of malignant cell clusters with distinct genetic profiles is also hypothesized, as well as the prominent role of astrocytes in the establishment of PCBM.
Assuntos
Adenocarcinoma/secundário , Neoplasias Encefálicas/secundário , Neoplasias da Próstata/patologia , Adenocarcinoma/genética , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Androgênicos/genéticaRESUMO
BACKGROUND: Anal residual tumors are consensually identified within six months of chemoradiotherapy and represent a persistent lesion that may have prognostic value for overall survival. The aim of this study was to evaluate the association of HPV and HIV status, p16 expression level and TP53 mutations with the absence of residual tumors (local response) in Squamous Cell Carcinoma (SCC) of the anal canal after chemoradiotherapy. METHODS: We performed a study on 78 patients with SCC of the anal canal who submitted to chemoradiotherapy and were followed for a six-month period to identify the absence or presence of residual tumors. HPV DNA was identified by polymerase chain reaction and direct sequencing, HIV RNA was detected by TaqMan amplification, p16 expression was detected by western blotting, and the mutational analysis of TP53 was performed by direct sequencing; additionally, samples carrying mutations underwent fluorescent in sit hybridization. The evaluation of the tumor response to treatment was conducted six months after the conclusion of chemoradiotherapy. The following classifications were used to evaluate the outcomes: a) no response (presence of residual tumor) and b) complete response (absence of residual tumor). RESULTS: The significant variables associated with the absence of residual tumors were HPV positive, p16 overexpressed, wild-type TP53, female gender, and stages I and II. Only the presence of HPV was independently correlated with the clinical response; this variable increased the chances of a response within six months by 31-fold. CONCLUSIONS: The presence of HPV in tumor cells was correlated with the absence of a residual tumor. This correlation is valuable and can direct future therapeutic approaches in the anal canal.
Assuntos
Neoplasias do Ânus/terapia , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia , DNA Viral/análise , Genes p16 , Neoplasia Residual , Papillomaviridae/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Ânus/genética , Neoplasias do Ânus/patologia , Neoplasias do Ânus/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Feminino , Expressão Gênica , Genótipo , HIV/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Resultado do TratamentoRESUMO
Esophageal squamous cell carcinoma (ESCC) is the most frequent esophageal tumor in the world. ESCC presents late diagnosis, highly aggressive behavior and poor survival. Changes in tumor cell energy metabolism appear to have a prominent role in malignant transformation. Tumor cells consume glucose avidly and produce lactic acid, even under normoxia. Among the factors that may contribute to the stimulation of glycolysis in tumor cells, there are changes in the glycolytic pathway enzymes such as: pyruvate kinase M1 and M2 (PKM2 and PKM1), hexokinase II (HKII), glucose transporter isoform 1 (GLUT-1), and transcription factor induced by hypoxia (HIF1α), responsible for the transcription of proteins cited. The objective of this study is to evaluate the alterations of these proteins and their association with clinicopathological data in ESCC. We performed immunohistochemistry to determine HIF-1α, GLUT-1, PKM1, PKM2, HK2 and Ki67-expression in ESCC patients and controls. Also, we used RT-qPCR to evaluated mRNA expression of GLUT-1 in esophageal mucosa of individuals without cancer, but are alcohol drinkers and tobacco smokers. Our results showed the exclusively expression of GLUT-1 in tumors cells and dysplastic samples. We also observed a compartmentalization of the expression of PKM1 and PKM2 in relation to tumor cells and stroma associated to tumor areas. All of the proteins evaluated, excepted GLUT-1, were frequently detected in normal mucosa. No correlations between clinicopathological features and protein expressions were observed. GLUT-1 expression appears in initial tumor lesions and is maintained through ESCC evolution. We reported for the first time PKM1 staining in normal esophagus and ESCC, being mostly present in more differentiated cells.
Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Glucose/metabolismo , Glicólise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Epitélio/enzimologia , Epitélio/patologia , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa/enzimologia , Mucosa/patologia , Piruvato Quinase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Microambiente Tumoral , Adulto JovemRESUMO
Reverse transcription followed by real-time PCR (RT-qPCR) is the gold standard for quantifying gene expression. However, because of PCR detection limits, theorized to be three template copies, the quantification of genes exhibiting great expression variability is challenging. Using genes with high to low expression in rat tissues we experimentally demonstrated this limit and found it to be applicable only for describing reactions in which stochastic events and the Monte Carlo effect are present. We also determined the lower limits of RNA input that should be used to prevent artifactual template quantification and we propose a methodology to assess RT-qPCR detection limits in any qPCR platform.
Assuntos
RNA/análise , Reação em Cadeia da Polimerase em Tempo Real , Animais , Benzotiazóis , Diaminas , Expressão Gênica , Limite de Detecção , Compostos Orgânicos/química , Quinolinas , Ratos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Parkinson's disease (PD) is characterized by a range of motor signs, but cognitive dysfunction is also observed. Supplementation with folic acid and vitamin B12 is expected to prevent cognitive impairment. To test this in PD, we promoted a lesion within the substantia nigra pars compacta of rats using the neurotoxin rotenone. In the sequence, the animals were supplemented with folic acid and vitamin B12 for 14 consecutive days and subjected to the object recognition test. We observed an impairment in object recognition memory after rotenone administration, which was prevented by supplementation (p < 0.01). Supplementation may adjust gene expression through efficient DNA methylation. To verify this, we measured the expression and methylation of the kynureninase gene (Kynu), whose product metabolizes neurotoxic metabolites often accumulated in PD as kynurenine. Supplementation prevented the decrease in Kynu expression induced by rotenone in the substantia nigra (p < 0.05), corroborating the behavioral data. No differences were observed concerning the methylation analysis of two CpG sites in the Kynu promoter. Instead, we suggest that folic acid and vitamin B12 increased global DNA methylation, reduced the expression of Kynu inhibitors, maintained Kynu-dependent pathway homeostasis, and prevented the memory impairment induced by rotenone. Our study raises the possibility of adjuvant therapy for PD with folic acid and vitamin B12.
Assuntos
Doença de Parkinson , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Rotenona/toxicidade , Ácido Fólico/farmacologia , Vitamina B 12/farmacologia , Modelos Animais de DoençasRESUMO
Head and neck squamous cell carcinomas (HNSCC) are among the most common and lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this compartment are crucial for cancer development and progression. Laminin is a fundamental component of ECM, where it represents one of the main components of basement membrane (BM), and data supporting its contribution to HNSCC genesis and progression has been vastly explored in oral cavity squamous cell carcinoma. Laminin subtypes 111 (LN-111) and 332 (LN-332) are the main isoforms associated with malignant transformation, contributing to proliferation, adhesion, migration, invasion, and metastasis, due to its involvement in the regulation of several pathways associated with HNSCC carcinogenesis, including the activation of the EGFR/MAPK signaling pathway. Therefore, it draws attention to the possibility that laminin may represent a convergence point in HNSCC natural history, and an attractive potential therapeutic target for these tumors.
RESUMO
Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
RESUMO
EZH2 is an enzymatic subunit of PRC2, an epigenetic regulator that triggers the methylation of the histone H3 lysine 27 silencing the transcription of several genes. EZH2 has a critical role in cancer progression, since its overexpression has been associated with increased cancer cell invasiveness, drug resistance and poor patient survival. However, the mechanisms accounting for EZH2 overexpression in cancer remain still unclear. Intriguingly, also HMGA protein overexpression is a feature of many human malignancies and correlates with the presence of metastases and a poor outcome. The HMGA proteins, including HMGA1 and HMGA2, belong to the architectural transcription factors that play a key role in the organization of chromatin structure. Here, we report a statistically significant correlation between HMGA1 and EZH2 expression in human lymphomas. We demonstrate that HMGA1 is able to bind EZH2 promoter and induce its activity. Consistently, silencing of HMGA1 expression results in the downregulation of the EZH2 levels leading to a decreased proliferation and migration rate of human lymphoma cell lines. Therefore, these data identify HMGA1 as an EZH2 activator, suggesting a novel molecular mechanism contributing to EZH2 overexpression in human malignancies and a synergism of these proteins in cancer progression.
RESUMO
Esophageal squamous cell carcinoma (ESCC) ranks among the most lethal tumors worldwide, as a consequence of late detection and poor treatment response, evidencing the need for diagnosis anticipation and new therapeutic targets. First, we investigated the IL6 gene and protein expression in the esophagus of individuals without esophageal disorders (healthy), ESCC, and non-tumoral surrounding tissue (NTST). Our results showed that IL6 mRNA and protein expression is upregulated in tumor cells relative to NTST. In the TCGA dataset, we identified a set of genes whose expression was correlated with IL6 mRNA levels, including the antiapoptotic gene BCL3. By using an immortalized esophageal cell line, we confirmed that IL6 was capable of inducing BCL3 expression in esophageal cells. BCL3 mRNA and protein are overexpressed in ESCC and NTST compared to healthy esophagus, and BCL3 mRNA could distinguish the morphologically normal samples (healthy and NTST) with 100% sensitivity and 95.12% specificity. The spatial intratumoral heterogeneity of both IL6 and BCL3 expression was evaluated, corroborating IL6 upregulation throughout the tumor, while tumor and NTST showed a consistent increase of BCL3 expression relative to the healthy esophagus. Our study shows that IL6 overexpression seems to be a key event in ESCC carcinogenesis, contributing to ESCC through a homogeneous antiapoptotic signalling via BCL3 overexpression, thus suggesting anti-IL6 therapies to be further considered for ESCC treatment. Finally, our data support the use of BCL3 mRNA expression as a potential biomarker for ESCC detection.
RESUMO
Esophageal cancer (EC) is an aggressive disease, presenting two main histological subtypes: adenocarcinoma (EAC) and squamous cell carcinoma (ESCC). The two EC subtypes widely differ concerning virtually all factors. ESCC development is mainly associated with tobacco and alcohol abuse, whereas obesity and chronic gastroesophageal reflux disease (GERD) are important risk factors not only for EAC, but also for for Barrett's esophagus (BE), an intestinal metaplasia that precedes EAC. Obesity triggers ectopic lipid droplets (LD) accumulation in non-adipose tissues. LD are organelles involved in cell metabolism, signaling, proliferation and production of inflammatory mediators. Therefore, the aim of this work was to investigate LD occurrence and role in EC. This study shows progressive LD levels increase along EAC development, in esophageal samples from non-obese through obese individuals, as well as BE, and EAC patients, whereas no significant changes were observed in ESCC samples, when compared to non-tumor samples. Additionally, in order to mimic BE and EAC risk factors exposure, a non-tumor esophageal cell line was incubated with oleic acid (OA) and acidified medium and/or deoxycholic acid (DCA), revealing a significant increment in LD amount as well as in COX-2 and CXCL-8 expression, and in IL-8 secretion. Further, COX-2 expression and LD amount presented a significant positive correlation and were detected co-localized in EAC, but not in ESCC, suggesting that LD may be the site for eicosanoid production in EAC. In conclusion, this study shows that obesity, and BE- and EAC-associated inflammatory stimuli result in a gradual increase of LD, that may be responsible for orchestrating inflammatory mediators' production and/or action, thus contributing to BE and EAC genesis and progression.
Assuntos
Adenocarcinoma/metabolismo , Esôfago de Barrett/metabolismo , Ciclo-Oxigenase 2/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Gotículas Lipídicas/metabolismo , Transdução de Sinais/fisiologia , Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Linhagem Celular , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Esôfago/metabolismo , Esôfago/patologia , Refluxo Gastroesofágico/metabolismo , Refluxo Gastroesofágico/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Fatores de RiscoRESUMO
The identification of molecular markers in negative surgical margins of oral squamous cell carcinoma (OSCC) might help in identifying residual molecular aberrations, and potentially improve the prediction of prognosis. We performed an Infinium MethylationEPIC BeadChip array on 32 negative surgical margins stratified based on the status of tumor recurrence in order to identify recurrence-specific aberrant DNA methylation (DNAme) markers. We identified 2512 recurrence-associated Differentially Methylated Positions (DMPs) and 392 Differentially Methylated Regions (DMRs) which were enriched in cell signaling and cancer-related pathways. A set of 14-CpG markers was able to discriminate recurrent and non-recurrent cases with high specificity and sensitivity rates (AUC 0.98, p = 3 × 10-6; CI: 0.95-1). A risk score based on the 14-CpG marker panel was applied, with cases classified within higher risk scores exhibiting poorer survival. The results were replicated using tumor-adjacent normal HNSCC samples from The Cancer Genome Atlas (TCGA). We identified residual DNAme aberrations in the negative surgical margins of OSCC patients, which could be informative for patient management by improving therapeutic intervention. This study proposes a novel DNAme-based 14-CpG marker panel as a promising predictor for tumor recurrence, which might contribute to improved decision-making for the personalized treatment of OSCC cases.
RESUMO
HPV oncoproteins can modulate DNMT1 expression and activity, and previous studies have reported both gene-specific and global DNA methylation alterations according to HPV status in head and neck cancer. However, validation of these findings and a more detailed analysis of the transposable elements (TEs) are still missing. Here we performed pyrosequencing to evaluate a 5-CpG methylation signature and Line1 methylation in an oropharyngeal squamous cell carcinoma (OPSCC) cohort. We further evaluated the methylation levels of the TEs, their correlation with gene expression and their impact on overall survival (OS) using the TCGA cohort. In our dataset, the 5-CpG signature distinguished HPV-positive and HPV-negative OPSCC with 66.67% sensitivity and 84.33% specificity. Line1 methylation levels were higher in HPV-positive cases. In the TCGA cohort, Line1, Alu and long terminal repeats (LTRs) showed hypermethylation in a frequency of 60.5%, 58.9% and 92.3%, respectively. ZNF541 and CCNL1 higher expression was observed in HPV-positive OPSCC, correlated with lower methylation levels of promoter-associated Alu and LTR, respectively, and independently associated with better OS. Based on our findings, we may conclude that a 5-CpG methylation signature can discriminate OPSCC according to HPV status with high accuracy and TEs are differentially methylated and may regulate gene expression in HPV-positive OPSCC.
RESUMO
Esophageal cancer is a prominent worldwide illness that is divided into two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Mortality rates are alarming, and the understanding of the mechanisms involved in esophageal cancer development, becomes essential. Purinergic signaling is related to many diseases and among these various types of tumors. Here we studied the effects of the P2Y2 receptor activation in different types of esophageal cancer. Esophageal tissue samples of healthy controls were used for P2Y2R expression quantification. Two human esophageal cancer cell lines Kyse-450 (squamous cell carcinoma) and OE-33 (adenocarcinoma) were used to perform in vitro analysis of cell proliferation, migration, adhesion, and the signaling pathways involved in P2Y2R activation. Data showed that P2Y2R was expressed in biopsies of patients with ESCC and adenocarcinoma, as well as in the two human esophageal cancer cell lines studied. The RT-qPCR analysis demonstrated that OE-33 cells have higher P2RY2 expression than Kyse-450 squamous cell line. Results showed that P2Y2R activation, induced by ATP or UTP, promoted esophageal cancer cells proliferation and colony formation. P2Y2R blockage with the selective antagonist, AR-C 118925XX, led to decreased proliferation, colony formation and adhesion. Treatments with ATP or UTP activated ERK 1/2 pathway in ESCC and ECA cells. The P2Y2R antagonism did not alter the migration of esophageal cancer cells. Interestingly, the esophageal cancer cell lines presented a distinct profile of nucleotide hydrolysis activity. The modulation of P2Y2 receptors may be a promising target for esophageal cancer treatment.
Assuntos
Adenocarcinoma/enzimologia , Carcinoma de Células Escamosas/enzimologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Trifosfato de Adenosina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais , Uridina Trifosfato/farmacologiaRESUMO
Despite advances in treatment of lethal prostate cancer, the incidence of prostate cancer brain metastases is increasing. In this sense, we analyzed the molecular profile, as well as the functional consequences involved in the reciprocal interactions between prostate tumor cells and human astrocytes. We observed that the DU145 cells, but not the LNCaP cells or the RWPE-1 cells, exhibited more pronounced, malignant and invasive phenotypes along their interactions with astrocytes. Moreover, global gene expression analysis revealed several genes that were differently expressed in our co-culture models with the overexpression of GLIPR1 and SPARC potentially representing a molecular signature associated with the invasion of central nervous system by prostate malignant cells. Further, these results were corroborated by immunohistochemistry and in silico analysis. Thus, we conjecture that the data here presented may increase the knowledge about the molecular mechanisms associated with the invasion of CNS by prostate malignant cells.
Assuntos
Neoplasias Encefálicas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Neoplasias da Próstata/genética , Células A549 , Animais , Astrócitos/química , Astrócitos/citologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Regulação para CimaRESUMO
Upper aerodigestive tract (UADT) tumors present different biological behavior and prognosis, suggesting specific molecular mechanisms underlying their development. However, they are rarely considered as single entities (particularly head and neck subsites) and share the most common genetic alterations. Therefore, there is a need for a better understanding of the global DNA methylation differences among UADT tumors. We performed a genome-wide DNA methylation analysis of esophageal (ESCC), laryngeal (LSCC), oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas, and their non-tumor counterparts. The unsupervised analysis showed that non-tumor tissues present markedly distinct DNA methylation profiles, while tumors are highly heterogeneous. Hypomethylation was more frequent in LSCC and OPSCC, while ESCC and OSCC presented mostly hypermethylation, with the latter showing a CpG island overrepresentation. Differentially methylated regions affected genes in 127 signaling pathways, with only 3.1% of these being common among different tumor subsites, but with different genes affected. The WNT signaling pathway, known to be dysregulated in different epithelial tumors, is a frequent hit for DNA methylation and gene expression alterations in ESCC and OPSCC, but mostly for genetic alterations in LSCC and OSCC. UADT tumor subsites present differences in genome-wide methylation regarding their profile, intensity, genomic regions and signaling pathways affected.
RESUMO
Esophageal cancer (EC) is among the 10 most common and fatal malignacies in the world, presenting a marked geographic variation in incidence rates between and within different countries. The TP53 tumor suppressor gene is highly mutated in esophageal tumors and its mutation pattern can offer clues to the etiopathology of the tumor. As Brazil presents one of the highest incidence areas in the West, a deeper knowledge of the molecular mechanisms related to EC development in the Brazilian population is needed. We analyzed the mutation profile of 110 esophageal squamous cell carcinomas (ESCC) of patients from Southeastern Brazil (Rio de Janeiro and São Paulo) and collected data regarding alcohol intake and tobacco smoking. We detected 41 mutations in tumor samples from 38 patients. There was no association between mutation frequency and tobacco smoking or alcohol drinking. The most frequently mutated codons were 179, 214, 220 and 248. Codons 179, 220 and 248 are hot-spots for ESCC, but codon 214 presents only 0.7% of the mutations registered in the IARC database. The mutation profile revealed a high percentage of mutations at A:T base pairs (34.1%) followed by deletions (17.1%). We concluded that the mutation profile detected in this study is different from that of patients from Southern Brazil but very similar to that previously seen in French patients, being characterized by a high frequency of mutations at A:T base pairs, which may be associated with acetaldehyde, the metabolic product of ethanol.