Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nature ; 628(8008): 569-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570681

RESUMO

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Dente , Animais , Eutérios/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mamíferos/fisiologia , Marsupiais/anatomia & histologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Filogenia , Dente/anatomia & histologia , Dente/fisiologia , Mastigação
2.
Nature ; 628(8008): 576-581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570677

RESUMO

The dual jaw joint of Morganucodon1,2 consists of the dentary-squamosal joint laterally and the articular-quadrate one medially. The articular-quadrate joint and its associated post-dentary bones constitute the precursor of the mammalian middle ear. Fossils documenting the transition from such a precursor to the mammalian middle ear are poor, resulting in inconsistent interpretations of this hallmark apparatus in the earliest stage of mammaliaform evolution1-5. Here we report mandibular middle ears from two Jurassic mammaliaforms: a new morganucodontan-like species and a pseudotribosphenic shuotheriid species6. The morganucodontan-like species shows many previously unknown post-dentary bone morphologies1,2 and exhibits features that suggest a loss of load-bearing function in its articular-quadrate joint. The middle ear of the shuotheriid approaches the mammalian condition in that it has features that are suitable for an exclusively auditory function, although the post-dentary bones are still attached to the dentary. With size reduction of the jaw-joint bones, the quadrate shifts medially at different degrees in relation to the articular in the two mammaliaforms. These changes provide evidence of a gradual loss of load-bearing function in the articular-quadrate jaw joint-a prerequisite for the detachment of the post-dentary bones from the dentary7-12 and the eventual breakdown of the Meckel's cartilage13-15 during the evolution of mammaliaforms.


Assuntos
Evolução Biológica , Orelha Média , Fósseis , Arcada Osseodentária , Mamíferos , Articulação Temporomandibular , Animais , Orelha Média/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mandíbula/anatomia & histologia , Articulação Temporomandibular/anatomia & histologia
3.
Biochem Soc Trans ; 52(1): 191-203, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334148

RESUMO

Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.


Assuntos
Cálcio , Imageamento Hiperespectral , AMP Cíclico , Sistemas do Segundo Mensageiro , Transdução de Sinais , Transferência Ressonante de Energia de Fluorescência/métodos
4.
Am J Respir Cell Mol Biol ; 67(3): 275-283, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35348443

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that is currently causing a pandemic and has been termed coronavirus disease (COVID-19). The elderly or those with preexisting conditions like diabetes, hypertension, coronary heart disease, chronic obstructive pulmonary disease, cerebrovascular disease, or kidney dysfunction are more likely to develop severe cases when infected. Patients with COVID-19 admitted to the ICU have higher mortality than non-ICU patients. Critical illness has consistently posed a challenge not only in terms of mortality but also in regard to long-term outcomes of survivors. Patients who survive acute critical illness including, but not limited to, pulmonary and systemic insults associated with acute respiratory distress syndrome, pneumonia, systemic inflammation, and mechanical ventilation, will likely suffer from post-ICU syndrome, a phenomenon of cognitive, psychiatric, and/or physical disability after treatment in the ICU. Post-ICU morbidity and mortality continue to be a cause for concern when considering large-scale studies showing 12-month mortality risks of 11.8-21%. Previous studies have demonstrated that multiple mechanisms, including cytokine release, mitochondrial dysfunction, and even amyloids, may lead to end-organ dysfunction in patients. We hypothesize that COVID-19 infection will lead to post-ICU syndrome via potentially similar mechanisms as other chronic critical illnesses and cause long-term morbidity and mortality in patients. We consider a variety of mechanisms and questions that not only consider the short-term impact of the COVID-19 pandemic but its long-term effects that may not yet be imagined.


Assuntos
COVID-19 , Pandemias , Idoso , Cuidados Críticos , Estado Terminal , Humanos , SARS-CoV-2
5.
FASEB J ; 35(10): e21946, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34555226

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by decreased alveolar-capillary barrier function, pulmonary edema consisting of proteinaceous fluid, and inhibition of net alveolar fluid transport responsible for resolution of pulmonary edema. There is currently no pharmacotherapy that has proven useful to prevent or treat ARDS, and two trials using beta-agonist therapy to treat ARDS demonstrated no effect. Prior studies indicated that IL-8-induced heterologous desensitization of the beta2-adrenergic receptor (ß2 -AR) led to decreased beta-agonist-induced mobilization of cyclic adenosine monophosphate (cAMP). Interestingly, phosphodiesterase (PDE) 4 inhibitors have been used in human airway diseases characterized by low intracellular cAMP levels and increases in specific cAMP hydrolyzing activity. Therefore, we hypothesized that PDE4 would mediate IL-8-induced heterologous internalization of the ß2 -AR and that PDE4 inhibition would restore beta-agonist-induced functions. We determined that CINC-1 (a functional IL-8 analog in rats) induces internalization of ß2 -AR from the cell surface, and arrestin-2, PDE4, and ß2 -AR form a complex during this process. Furthermore, we determined that cAMP associated with the plasma membrane was adversely affected by ß2 -AR heterologous desensitization. Additionally, we determined that rolipram, a PDE4 inhibitor, reversed CINC-1-induced derangements of cAMP and also caused ß2 -AR to successfully recycle back to the cell surface. Finally, we demonstrated that rolipram could reverse CINC-1-mediated inhibition of beta-agonist-induced alveolar fluid clearance in a murine model of trauma-shock. These results indicate that PDE4 plays a role in CINC-1-induced heterologous internalization of the ß2 -AR; PDE4 inhibition reverses these effects and may be a useful adjunct in particular ARDS patients.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Interleucina-8/imunologia , Receptores Adrenérgicos beta 2/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiocina CXCL1/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , beta-Arrestina 1/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1074-L1083, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186399

RESUMO

Activation of the inflammasome-caspase-1 axis in lung endothelial cells is emerging as a novel arm of the innate immune response to pneumonia and sepsis caused by Pseudomonas aeruginosa. Increased levels of circulating autacoids are hallmarks of pneumonia and sepsis and induce physiological responses via cAMP signaling in targeted cells. However, it is unknown whether cAMP affects other functions, such as P. aeruginosa-induced caspase-1 activation. Herein, we describe the effects of cAMP signaling on caspase-1 activation using a single cell flow cytometry-based assay. P. aeruginosa infection of cultured lung endothelial cells caused caspase-1 activation in a distinct population of cells. Unexpectedly, pharmacological cAMP elevation increased the total number of lung endothelial cells with activated caspase-1. Interestingly, addition of cAMP agonists augmented P. aeruginosa infection of lung endothelial cells as a partial explanation underlying cAMP priming of caspase-1 activation. The cAMP effect(s) appeared to function as a priming signal because addition of cAMP agonists was required either before or early during the onset of infection. However, absolute cAMP levels measured by ELISA were not predictive of cAMP-priming effects. Importantly, inhibition of de novo cAMP synthesis decreased the number of lung endothelial cells with activated caspase-1 during infection. Collectively, our data suggest that lung endothelial cells rely on cAMP signaling to prime caspase-1 activation during P. aeruginosa infection.


Assuntos
Caspase 1/genética , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , 1-Metil-3-Isobutilxantina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Caspase 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/agonistas , AMP Cíclico/antagonistas & inibidores , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Dinoprostona/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Cultura Primária de Células , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ratos , Rolipram/farmacologia , Análise de Célula Única
7.
Am J Physiol Heart Circ Physiol ; 319(2): H349-H358, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589443

RESUMO

Here, we report the generation of a Cre-recombinase (iCre) transgenic rat, where iCre is driven using a vascular endothelial-cadherin (CDH5) promoter. The CDH5 promoter was cloned from rat pulmonary microvascular endothelial cells and demonstrated ~60% similarity to the murine counterpart. The cloned rat promoter was 2,508 bp, it extended 79 bp beyond the transcription start site, and it was 22,923 bp upstream of the translation start site. The novel promoter was cloned upstream of codon-optimized iCre and subcloned into a Sleeping Beauty transposon vector for transpositional transgenesis in Sprague-Dawley rats. Transgenic founders were generated and selected for iCre expression. Crossing the CDH5-iCre rat with a tdTomato reporter rat resulted in progeny displaying endothelium-restricted fluorescence. tdTomato fluorescence was prominent in major arteries and veins, and it was similar in males and females. Quantitative analysis of the carotid artery and the jugular vein revealed that, on average, more than 50% of the vascular surface area exhibited strong fluorescence. tdTomato fluorescence was observed in the circulations of every tissue tested. The microcirculation in all tissues tested displayed homogenous fluorescence. Fluorescence was examined across young (6-7.5 mo), middle (14-16.5 mo), and old age (17-19.5 mo) groups. Although tdTomato fluorescence was seen in middle- and old-age animals, the intensity of the fluorescence was significantly reduced compared with that seen in the young rats. Thus, this endothelium-restricted transgenic rat offers a novel platform to test endothelial microheterogeneity within all vascular segments, and it provides exceptional resolution of endothelium within-organ microcirculation for application to translational disease models.NEW & NOTEWORTHY The use of transgenic mice has been instrumental in advancing molecular insight of physiological processes, yet these models oftentimes do not faithfully recapitulate human physiology and pathophysiology. Rat models better replicate some human conditions, like Group 1 pulmonary arterial hypertension. Here, we report the development of an endothelial cell-restricted transgenic reporter rat that has broad application to vascular biology. This first-in-kind model offers exceptional endothelium-restricted tdTomato expression, in both conduit vessels and the microcirculations of organs.


Assuntos
Antígenos CD/genética , Caderinas/genética , Células Endoteliais/metabolismo , Genes Reporter , Integrases/genética , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica , Integrases/metabolismo , Proteínas Luminescentes/biossíntese , Masculino , Microcirculação , Ratos Sprague-Dawley , Ratos Transgênicos , Distribuição Tecidual , Transposases/genética , Transposases/metabolismo , Proteína Vermelha Fluorescente
8.
FASEB J ; 32(7): 3832-3843, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29447005

RESUMO

Acid-sensing ion channels (ASICs) are the major proton receptor in the brain and a key mediator of acidosis-induced neuronal injuries in disease. Most of published data on ASIC function came from studies performed in mice, and relatively little is known about potential differences between human and mouse ASICs (hASIC and mASIC, respectively). This information is critical for us to better interpret the functional importance of ASICs in human disease. Here, we examined the expression of ASICs in acutely resected human cortical tissue. Compared with mouse cortex, human cortical tissue showed a similar ratio of ASIC1a:ASIC2a expression, had reduced ASIC2b level, and exhibited a higher membrane:total ratio of ASIC1a. We further investigated the mechanism for higher surface trafficking of hASIC1a in heterologous cells. A single amino acid at position 285 was critical for increased N-glycosylation and surface expression of hASIC1a. Consistent with the changes in trafficking and current, cells expressing hASIC1a or mASIC1a S285P mutant had a higher acid-activated calcium increase and exhibited worsened acidotoxicity. These data suggest that ASICs are likely to have a larger impact on acidosis-induced neuronal injuries in humans than mice, and this effect is, at least in part, a result of more efficient trafficking of hASIC1a.-Xu, Y., Jiang, Y.-Q., Li, C., He, M., Rusyniak, W. G., Annamdevula, N., Ochoa, J., Leavesley, S. J., Xu, J., Rich, T. C., Lin, M. T., Zha, X.-M. Human ASIC1a mediates stronger acid-induced responses as compared with mouse ASIC1a.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Prótons , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Potenciais de Ação , Adolescente , Adulto , Animais , Células CHO , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Cricetinae , Cricetulus , Feminino , Humanos , Ativação do Canal Iônico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , Especificidade da Espécie
9.
Cytometry A ; 93(10): 1029-1038, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30176184

RESUMO

Cyclic AMP is a ubiquitous second messenger that orchestrates a variety of cellular functions over different timescales. The mechanisms underlying specificity within this signaling pathway are still not well understood. Several lines of evidence suggest the existence of spatial cAMP gradients within cells, and that compartmentalization underlies specificity within the cAMP signaling pathway. However, to date, no studies have visualized cAMP gradients in three spatial dimensions (3D: x, y, z).This is in part due to the limitations of FRET-based cAMP sensors, specifically the low signal-to-noise ratio intrinsic to all intracellular FRET probes. Here, we overcome this limitation, at least in part, by implementing spectral imaging approaches to estimate FRET efficiency when multiple fluorescent labels are used and when signals are measured from weakly expressed fluorescent proteins in the presence of background autofluorescence and stray light. Analysis of spectral image stacks in two spatial dimensions (2D) from single confocal slices indicates little or no cAMP gradients formed within pulmonary microvascular endothelial cells (PMVECs) under baseline conditions or following 10 min treatment with the adenylyl cyclase activator forskolin. However, analysis of spectral image stacks in 3D demonstrates marked cAMP gradients from the apical to basolateral face of PMVECs. Results demonstrate that spectral imaging approaches can be used to assess cAMP gradients-and in general gradients in fluorescence and FRET-within intact cells. Results also demonstrate that 2D imaging studies of localized fluorescence signals and, in particular, cAMP signals, whether using epifluorescence or confocal microscopy, may lead to erroneous conclusions about the existence and/or magnitude of gradients in either FRET or the underlying cAMP signals. Thus, with the exception of cellular structures that can be considered in one spatial dimension, such as neuronal processes, 3D measurements are required to assess mechanisms underlying compartmentalization and specificity within intracellular signaling pathways.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/instrumentação , Transferência Ressonante de Energia de Fluorescência/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Masculino , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Razão Sinal-Ruído
10.
J Anat ; 228(6): 984-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26939052

RESUMO

The giant extinct marsupial Diprotodon optatum has unusual skull morphology for an animal of its size, consisting of very thin bone and large cranial sinuses that occupy most of the internal cranial space. The function of these sinuses is unknown as there are no living marsupial analogues. The finite element method was applied to identify areas of high and low stress, and estimate the bite force of Diprotodon to test hypotheses on the function of the extensive cranial sinuses. Detailed three-dimensional models of the cranium, mandible and jaw adductor muscles were produced. In addition, manipulations to the Diprotodon cranial model were performed to investigate changes in skull and sinus structure, including a model with no sinuses (sinuses 'filled' with bone) and a model with a midsagittal crest. Results indicate that the cranial sinuses in Diprotodon significantly lighten the skull while still providing structural support, a high bite force and low stress, indicating the cranium may have been able to withstand higher loads than those generated during feeding. Data from this study support the hypothesis that pneumatisation is driven by biomechanical loads and occurs in areas of low stress. The presence of sinuses is likely to be a byproduct of the separation of the outer surface of the skull from the braincase due to the demands of soft tissue including the brain and the large jaw adductor musculature, especially the temporalis. In very large species, such as Diprotodon, this separation is more pronounced, resulting in extensive cranial sinuses due to a relatively small brain compared with the size of the skull.


Assuntos
Força de Mordida , Cavidades Cranianas/fisiologia , Fósseis/anatomia & histologia , Marsupiais/fisiologia , Crânio/fisiologia , Animais , Fenômenos Biomecânicos , Cavidades Cranianas/anatomia & histologia , Análise de Elementos Finitos , Marsupiais/anatomia & histologia , Modelos Biológicos , Crânio/anatomia & histologia , Estresse Mecânico
11.
Am J Physiol Cell Physiol ; 308(4): C277-88, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25428882

RESUMO

Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Células Endoteliais/metabolismo , Sódio/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Cinética , Potenciais da Membrana , Proteína ORAI1 , Interferência de RNA , Ratos , Canais de Cátion TRPC/efeitos dos fármacos , Transfecção
12.
Am J Physiol Cell Physiol ; 309(6): C415-24, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26201952

RESUMO

Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 µM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células HEK293 , Humanos , Hidrólise , Ativação do Canal Iônico/fisiologia , Rolipram/farmacologia , Xantinas/farmacologia
13.
J Biol Chem ; 289(33): 23065-23074, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973219

RESUMO

Inhaled ß-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with ß-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of ß-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased ß-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, ß-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which ß-agonists exert their relaxant effects.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Sistema Respiratório/metabolismo , Linhagem Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Músculo Liso/citologia , Sistema Respiratório/citologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38577224

RESUMO

Hyperspectral imaging (HSI) technologies have enabled a range of experimental techniques and studies in the fluorescence microscopy field. Unfortunately, a drawback of many HSI microscope platforms is increased acquisition time required to collect images across many spectral bands, as well as signal loss due to the need to filter or disperse emitted fluorescence into many discrete bands. We have previously demonstrated that an alternative approach of scanning the fluorescence excitation spectrum can greatly improve system efficiency by decreasing light losses associated with emission filtering. Our initial system was configured using an array of thin-film tunable filters (TFTFs, VersaChrome, Semrock) mounted in a tiltable filter wheel (VF-5, Sutter) that required ~150-200 ms to switch between wavelengths. Here, we present a new configuration for high-speed switching of TFTFs to allow rapid time-lapse HSI microscopy. A TFTF array was mounted in a custom holder that was attached to a piezoelectric rotation mount (ThorLabs), allowing high-speed rotation. Switching between adjacent filters was achieved using the internal optics of a DG-4 lightsource (Sutter Instrument), including a pair of off-axis parabolic mirrors and galvanometers. Output light was coupled to a liquid lightguide and into an inverted widefield fluorescence microscope (TI-2, Nikon Instruments). Initial tests indicate that the HSI system provides a 15-20 nm bandwidth tunable excitation band and ~10-20 ms wavelength switch time, allowing for high-speed HSI imaging of dynamic cellular events. This work was supported by NIH P01HL066299, R01HL169522, NIH TL1TR003106, and NSF MRI1725937.

15.
Sci Rep ; 14(1): 14790, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926431

RESUMO

Colorectal cancer is one of the top contributors to cancer-related deaths in the United States, with over 100,000 estimated cases in 2020 and over 50,000 deaths. The most common screening technique is minimally invasive colonoscopy using either reflected white light endoscopy or narrow-band imaging. However, current imaging modalities have only moderate sensitivity and specificity for lesion detection. We have developed a novel fluorescence excitation-scanning hyperspectral imaging (HSI) approach to sample image and spectroscopic data simultaneously on microscope and endoscope platforms for enhanced diagnostic potential. Unfortunately, fluorescence excitation-scanning HSI datasets pose major challenges for data processing, interpretability, and classification due to their high dimensionality. Here, we present an end-to-end scalable Artificial Intelligence (AI) framework built for classification of excitation-scanning HSI microscopy data that provides accurate image classification and interpretability of the AI decision-making process. The developed AI framework is able to perform real-time HSI classification with different speed/classification performance trade-offs by tailoring the dimensionality of the dataset, supporting different dimensions of deep learning models, and varying the architecture of deep learning models. We have also incorporated tools to visualize the exact location of the lesion detected by the AI decision-making process and to provide heatmap-based pixel-by-pixel interpretability. In addition, our deep learning framework provides wavelength-dependent impact as a heatmap, which allows visualization of the contributions of HSI wavelength bands during the AI decision-making process. This framework is well-suited for HSI microscope and endoscope platforms, where real-time analysis and visualization of classification results are required by clinicians.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Imageamento Hiperespectral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/diagnóstico por imagem , Humanos , Imageamento Hiperespectral/métodos , Colonoscopia/métodos , Imagem Óptica/métodos , Processamento de Imagem Assistida por Computador/métodos , Detecção Precoce de Câncer/métodos
16.
Cytometry A ; 83(10): 898-912, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23929684

RESUMO

Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein-protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP-Epac-YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. © 2013 International Society for Advancement of Cytometry.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Células HEK293 , Humanos , Microscopia Confocal
17.
FASEB J ; 26(9): 3670-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22649031

RESUMO

A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules that can compartmentalize cAMP signaling transduced by ß2-adrenergic receptors (ß(2)ARs); such compartmentalization ensures speed and fidelity of cAMP signaling and effects on cell function. This study aimed to assess the role of AKAPs in regulating global and compartmentalized ß(2)AR signaling in human airway smooth muscle (ASM). Transcriptome and proteomic analyses were used to characterize AKAP expression in ASM. Stable expression or injection of peptides AKAP-IS or Ht31 was used to disrupt AKAP-PKA interactions, and global and compartmentalized cAMP accumulation stimulated by ß-agonist was assessed by radioimmunoassay and membrane-delineated flow through cyclic nucleotide-gated channels, respectively. ASM expresses multiple AKAP family members, with gravin and ezrin among the most readily detected. AKAP-PKA disruption had minimal effects on whole-cell cAMP accumulation stimulated by ß-agonist (EC(50) and B(max)) concentrations, but significantly increased the duration of plasma membrane-delineated cAMP (τ=251±51 s for scrambled peptide control vs. 399±79 s for Ht31). Direct PKA inhibition eliminated decay of membrane-delineated cAMP levels. AKAPs coordinate compartmentalized cAMP signaling in ASM cells by regulating multiple elements of ß(2)AR-mediated cAMP accumulation, thereby representing a novel target for manipulating ß(2)AR signaling and function in ASM.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Compartimento Celular , AMP Cíclico/metabolismo , Músculo Liso/metabolismo , Transdução de Sinais , Traqueia/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Células Cultivadas , Humanos , Músculo Liso/citologia , RNA Mensageiro/genética , Traqueia/citologia
18.
Sensors (Basel) ; 13(7): 9267-93, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23877125

RESUMO

Hyperspectral imaging and analysis approaches offer accurate detection and quantification of fluorescently-labeled proteins and cells in highly autofluorescent tissues. However, selecting optimum acquisition settings for hyperspectral imaging is often a daunting task. In this study, we compared two hyperspectral systems-a widefield system with acoustic optical tunable filter (AOTF) and charge coupled device (CCD) camera, and a confocal system with diffraction gratings and photomultiplier tube (PMT) array. We measured the effects of system parameters on hyperspectral image quality and linear unmixing results. Parameters that were assessed for the confocal system included pinhole diameter, laser power, PMT gain and for the widefield system included arc lamp intensity, and camera gain. The signal-to-noise ratio (SNR) and the root-mean-square error (RMS error) were measured to assess system performance. Photobleaching dynamics were studied. Finally, theoretical sensitivity studies were performed to estimate the incremental response (sensitivity) and false-positive detection rates (specificity). Results indicate that hyperspectral imaging assays are highly dependent on system parameters and experimental conditions. For detection of green fluorescent protein (GFP)-expressing cells in fixed lung tissues, a confocal pinhole of five airy disk units, high excitation intensity and low detector gain were optimal. The theoretical sensitivity studies revealed that widefield hyperspectral microscopy was able to detect GFP with fewer false positive occurrences than confocal microscopy, even though confocal microscopy offered improved signal and noise characteristics. These studies provide a framework for optimization that can be applied to a variety of hyperspectral imaging systems.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Iluminação/instrumentação , Microscopia Confocal/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Commun Biol ; 6(1): 146, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797304

RESUMO

Monotremata is a clade of egg-lying mammals, represented by the living platypus and echidnas, which is endemic to Australia, and adjacent islands. Occurrence of basal monotremes in the Early Cretaceous of Australia has led to the consensus that this clade originated on that continent, arriving later to South America. Here we report on the discovery of a Late Cretaceous monotreme from southern Argentina, demonstrating that monotremes were present in circumpolar regions by the end of the Mesozoic, and that their distinctive anatomical features were probably present in these ancient forms as well.


Assuntos
Monotremados , Ornitorrinco , Tachyglossidae , Animais , Mamíferos , América do Sul
20.
J Biomed Opt ; 28(2): 026502, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36761255

RESUMO

Significance: Hyperspectral imaging (HSI) technologies offer great potential in fluorescence microscopy for multiplexed imaging, autofluorescence removal, and analysis of autofluorescent molecules. However, there are also associated trade-offs when implementing HSI in fluorescence microscopy systems, such as decreased acquisition speed, resolution, or field-of-view due to the need to acquire spectral information in addition to spatial information. The vast majority of HSI fluorescence microscopy systems provide spectral discrimination by filtering or dispersing the fluorescence emission, which may result in loss of emitted fluorescence signal due to optical filters, dispersive optics, or supporting optics, such as slits and collimators. Technologies that scan the fluorescence excitation spectrum may offer an approach to mitigate some of these trade-offs by decreasing the complexity of the emission light path. Aim: We describe the development of an optical technique for hyperspectral imaging fluorescence excitation-scanning (HIFEX) on a microscope system. Approach: The approach is based on the design of an array of wavelength-dependent light emitting diodes (LEDs) and a unique beam combining system that uses a multifurcated mirror. The system was modeled and optimized using optical ray trace simulations, and a prototype was built and coupled to an inverted microscope platform. The prototype system was calibrated, and initial feasibility testing was performed by imaging multilabel slide preparations. Results: We present results from optical ray trace simulations, prototyping, calibration, and feasibility testing of the system. Results indicate that the system can discriminate between at least six fluorescent labels and autofluorescence and that the approach can provide decreased wavelength switching times, in comparison with mechanically tuned filters. Conclusions: We anticipate that LED-based HIFEX microscopy may provide improved performance for time-dependent and photosensitive assays.


Assuntos
Carmustina , Óptica e Fotônica , Cintilografia , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA