Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 35(6): 603-15, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12957653

RESUMO

Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. One oxidative pathway of LDL involves myeloperoxidase, which catalyzes the production of hypochlorous acid (HOCl) in monocytes. We investigated the apoptotic mechanism induced by oxLDL, generated by HOCl treatment of native LDL, in human monocytic U937 cell line. The involvement of the mitochondrial apoptotic pathway was analyzed in Bcl-2-overexpressing clones, generated from U937 cells. HOCl-oxLDL induced in U937 cells (i) a marked caspase-dependent increase of apoptosis, (ii) a loss of mitochondrial membrane potential, (iii) a specific activation of caspase-2, -3, -8, and -9, and (iv) a similar degree of apoptosis in presence or absence of anti-Fas and anti-TNF-R1 antibodies. Moreover, the degree of HOCl-oxLDL-induced caspase-3 and -8 activation, and apoptosis was significantly reduced in U937/Bcl-2 cells, with no activation of caspase-9. By contrast, Cu-oxLDL-mediated apoptosis in U937 cells involved exclusively the mitochondrial pathway. In conclusion, the mechanism of HOCl-oxLDL-induced apoptosis in monocytic U937 cells involves the two pathways of apical caspase activation: (i) death receptor-mediated caspase-8 and (ii) mitochondria-mediated caspase-9. This converges in the activation of executing caspases, including caspase-3, and apoptosis. The interference of Bcl-2 overexpression with HOCl-oxLDL-induced apoptosis suggests the importance of mitochondrial involvement in this apoptotic mechanism.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Hipocloroso/química , Lipoproteínas LDL/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células U937 , Receptor fas/metabolismo
2.
Kidney Int Suppl ; (84): S125-7, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12694326

RESUMO

Oxidative stress has been implicated in the cardiovascular complications in chronic renal failure patients. Lipoprotein oxidation is involved in the genesis of atherosclerosis. Both the lipid and the protein moieties of low-density lipoproteins (LDL) are subject to oxidation. We have shown that oxidation of LDL by hypochlorous acid (HOCl) in vitro, reflecting increased myeloperoxidase (MPO) activity in vivo, leads mainly to modifications of apolipoproteins, such that the latter in turn induce high rates of apoptosis in a human monocytic cell line via a caspase-dependent pathway. These in vitro oxidative changes of LDL protein moiety, if shown to occur to a significant extent in uremic patients in vivo, may represent an important pathway in the pathogenesis of atherogenesis.


Assuntos
Arteriosclerose/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo/fisiologia , Uremia/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA