RESUMO
Overfishing is the primary cause of marine defaunation, yet declines in and increasing extinction risks of individual species are difficult to measure, particularly for the largest predators found in the high seas1-3. Here we calculate two well-established indicators to track progress towards Aichi Biodiversity Targets and Sustainable Development Goals4,5: the Living Planet Index (a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species) and the Red List Index (a measure of change in extinction risk calculated for all 31 oceanic species of sharks and rays). We find that, since 1970, the global abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase in relative fishing pressure. This depletion has increased the global extinction risk to the point at which three-quarters of the species comprising this functionally important assemblage are threatened with extinction. Strict prohibitions and precautionary science-based catch limits are urgently needed to avert population collapse6,7, avoid the disruption of ecological functions and promote species recovery8,9.
Assuntos
Organismos Aquáticos/isolamento & purificação , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção/estatística & dados numéricos , Oceanos e Mares , Tubarões , Rajidae , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Feminino , Peixes , Cadeia Alimentar , Objetivos , História do Século XX , História do Século XXI , Dinâmica Populacional/estatística & dados numéricos , Comportamento Predatório , Medição de Risco , Desenvolvimento SustentávelRESUMO
Practical biodiversity conservation relies on delineation of biologically meaningful units. Manta and devil rays (Mobulidae) are threatened worldwide, yet morphological similarities and a succession of recent taxonomic changes impede the development of an effective conservation strategy. Here, we generate genome-wide single nucleotide polymorphism (SNP) data from a geographically and taxonomically representative set of manta and devil ray samples to reconstruct phylogenetic relationships and evaluate species boundaries under the general lineage concept. We show that nominal species units supported by alternative data sources constitute independently evolving lineages, and find robust evidence for a putative new species of manta ray in the Gulf of Mexico. Additionally, we uncover substantial incomplete lineage sorting indicating that rapid speciation together with standing variation in ancestral populations has driven phylogenetic uncertainty within Mobulidae. Finally, we detect cryptic diversity in geographically distinct populations, demonstrating that management below the species level may be warranted in certain species. Overall, our study provides a framework for molecular genetic species delimitation that is relevant to wide-ranging taxa of conservation concern, and highlights the potential for genomic data to support effective management, conservation and law enforcement strategies.
Assuntos
Biodiversidade , Genoma , Golfo do México , FilogeniaRESUMO
Microsatellites are useful in studies of population genetics, sibship, and parentage. Here, we screened for microsatellites from multiple elasmobranch genomic libraries using an enrichment protocol followed by sequencing on an Illumina platform. We concurrently screened five and then nine genomes and describe the number of potential loci from each respective round of sequencing. To validate the efficacy of the protocol, we developed and tested primers for the pelagic thresher shark, Alopias pelagicus. The method described here is a cost-effective protocol to increase the pool of potential useful loci and allows the concurrent screening of multiple libraries.
Assuntos
Elasmobrânquios/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Animais , Biblioteca Gênica , Genética Populacional/métodos , Tubarões/genéticaRESUMO
Shallow coastal lagoons are vital ecosystems for many aquatic species and understanding their biodiversity is essential. Very little is known about the distribution and abundance of globally threatened marine megafauna in coastal lagoons of the Arabian Gulf. This study combined underwater and aerial surveys to investigate the distributions and relative abundance of marine megafauna in a large lagoon. We identified 13 species of megafauna including sea turtles, sharks, and rays. Eleven of these are globally threatened according to the IUCN Red List of Threatened Species. The Critically Endangered Halavi guitarfish (Glaucostegus halavi), and the Endangered green turtle (Chelonia mydas) were the most frequently occurring species. Results demonstrate the value of combining aerial and underwater video surveys to obtain spatially comprehensive data on marine megafauna in shallow coastal lagoons. This new information emphasises the importance of Umm Al Quwain lagoon for biodiversity conservation to protect threatened marine species and their habitats.
Assuntos
Ecossistema , Tartarugas , Animais , Emirados Árabes Unidos , Biodiversidade , Espécies em Perigo de ExtinçãoRESUMO
Here, we summarise the extinction risk of the sharks and rays endemic to coastal, shelf, and slope waters of the southwest Indian Ocean and adjacent waters (SWIO+, Namibia to Kenya, including SWIO islands). This region is a hotspot of endemic and evolutionarily distinct sharks and rays. Nearly one-fifth (n = 13 of 70, 18.6%) of endemic sharks and rays are threatened, of these: one is Critically Endangered, five are Endangered, and seven are Vulnerable. A further seven (10.0%) are Near Threatened, 33 (47.1%) are Least Concern, and 17 (24.3%) are Data Deficient. While the primary threat is overfishing, there are the first signs that climate change is contributing to elevated extinction risk through habitat reduction and inshore distributional shifts. By backcasting their status, few endemic species were threatened in 1980, but this changed soon after the emergence of targeted shark and ray fisheries. South Africa has the highest national conservation responsibility, followed by Mozambique and Madagascar. Yet, while fisheries management and enforcement have improved in South Africa over recent decades, substantial improvements are urgently needed elsewhere. To avoid extinction and ensure robust populations of the region's endemic sharks and rays and maintain ecosystem functionality, there is an urgent need for the strict protection of Critically Endangered and Endangered species and sustainable management of Vulnerable, Near Threatened, and Least Concern species, underpinned by species-level data collection and reduction of incidental catch.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Extinção Biológica , Tubarões , Rajidae , Animais , Tubarões/fisiologia , Oceano Índico , Pesqueiros , EcossistemaRESUMO
The deep ocean is the last natural biodiversity refuge from the reach of human activities. Deepwater sharks and rays are among the most sensitive marine vertebrates to overexploitation. One-third of threatened deepwater sharks are targeted, and half the species targeted for the international liver-oil trade are threatened with extinction. Steep population declines cannot be easily reversed owing to long generation lengths, low recovery potentials, and the near absence of management. Depth and spatial limits to fishing activity could improve conservation when implemented alongside catch regulations, bycatch mitigation, and international trade regulation. Deepwater sharks and rays require immediate trade and fishing regulations to prevent irreversible defaunation and promote recovery of this threatened megafauna group.
Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Caça , Tubarões , Rajidae , Animais , Humanos , Internacionalidade , Carne , Óleos de Peixe , Biodiversidade , Oceanos e Mares , RiscoRESUMO
Sharks and rays are key functional components of coral reef ecosystems, yet many populations of a few species exhibit signs of depletion and local extinctions. The question is whether these declines forewarn of a global extinction crisis. We use IUCN Red List to quantify the status, trajectory, and threats to all coral reef sharks and rays worldwide. Here, we show that nearly two-thirds (59%) of the 134 coral-reef associated shark and ray species are threatened with extinction. Alongside marine mammals, sharks and rays are among the most threatened groups found on coral reefs. Overfishing is the main cause of elevated extinction risk, compounded by climate change and habitat degradation. Risk is greatest for species that are larger-bodied (less resilient and higher trophic level), widely distributed across several national jurisdictions (subject to a patchwork of management), and in nations with greater fishing pressure and weaker governance. Population declines have occurred over more than half a century, with greatest declines prior to 2005. Immediate action through local protections, combined with broad-scale fisheries management and Marine Protected Areas, is required to avoid extinctions and the loss of critical ecosystem function condemning reefs to a loss of shark and ray biodiversity and ecosystem services, limiting livelihoods and food security.
Assuntos
Recifes de Corais , Tubarões , Animais , Ecossistema , Conservação dos Recursos Naturais , Pesqueiros , MamíferosRESUMO
The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.
RESUMO
BACKGROUND: Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. METHODS: FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). RESULTS AND CONCLUSION: Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.
Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Animais , Linhagem Celular , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , L-Lactato Desidrogenase/metabolismo , Macrófagos/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
There is scarce information on the current importance of oyster beds as fishing grounds in the United Arab Emirates (UAE). This study aims to understand the socio-economic value of oyster bed fisheries through questionnaire-based surveys with fishers. Of 106 Emirati fishers interviewed, 67 % use oyster beds due to the proximity to shore, better catch quality, and species abundance. Oyster bed fisheries are recreational and commercial, with handline and fish traps the most common used gears. They provide food for local consumption and cash income. All respondents noticed a fish abundance and size decrease throughout the last decade. Fishers suggest establishing marine protected areas and updating fishing regulations to improve fishing stock status. During the Covid-19 pandemic, oyster fisheries increased, highlighting the value of these fishing grounds for food availability. These fisheries support the local economy and heritage, and urgently need management to ensure the protection of these often-overlooked habitats.
Assuntos
COVID-19 , Ostreidae , Animais , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Humanos , Caça , Pandemias , Emirados Árabes UnidosRESUMO
Since radiotherapy is widely used in cancer treatment, it is essential to develop strategies which lower the irradiation burden while increasing efficacy and become efficient even in radio resistant tumors. Our new strategy is relying on the development of solid hybrid nanoparticles based on rare-earth such as gadolinium. In this paper, we then evidenced that gadolinium-based particles can be designed to enter efficiently into the human glioblastoma cell line U87 in quantities that can be tuned by modifying the incubation conditions. These sub-5 nm particles consist in a core of gadolinium oxide, a shell of polysiloxane and are functionalized by diethylenetriaminepentaacetic acid (DTPA). Although photoelectric effect is maximal in the [10-100 keV] range, such particles were found to possess efficient in-vitro radiosensitizing properties at an energy of 660 keV by using the "single-cell gel electrophoresis comet assay," an assay that measures the number of DNA damage that occurs during irradiation. Even more interesting, the particles have been evidenced by MTT assays to be also efficient radiosensitizers at an energy of 6 MeV for doses comprised between 2 and 8 Gy. The properties of the gadolinium-based particles give promising opening to a particle-assisted radio-therapy by using irradiation systems already installed in the majority of hospitals.
Assuntos
Neoplasias Encefálicas/patologia , Gadolínio , Glioblastoma/patologia , Nanopartículas , Radiossensibilizantes , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Ensaio Cometa , Dano ao DNA , Glioblastoma/genética , Humanos , Técnicas In VitroRESUMO
The rehabilitation of wildlife can contribute directly to the conservation of threatened species by helping to maintain wild populations. This study focused on determining the post-rehabilitation survival and spatial ecology of sea turtles and on comparing the movements of individuals with flipper amputations (amputees) to non-amputee animals. Our aims were to assess whether rehabilitated sea turtles survive after release, to compare and contrast the movement characteristics of the different species of sea turtles we tracked, and to examine whether amputees and non-amputees within species behaved similarly post-release. Twenty-six rehabilitated sea turtles from four species, including hawksbill Eretmochelys imbricata (n = 12), loggerhead Caretta caretta (n = 11), green Chelonia mydas (n = 2), and olive ridley Lepidochelys olivacea (n = 1) sea turtles from the United Arab Emirates were fitted with satellite tags before release. Rehabilitation times ranged from 89 to 817 days (mean 353 ± 237 days). Post-release movements and survival were monitored for 8 to 387 days (mean 155 ± 95 days) through satellite tracking. Tag data suggested that three tracked sea turtles died within four days of release, one after 27 days, and one after 192 days from what are thought to be anthropogenic factors unrelated to their pre-rehabilitation ailments. We then compared habitat use and movement characteristics among the different sea turtle species. Although half of all turtles crossed one or more international boundaries, dispersal varied among species. Loggerhead turtles had a high dispersal, with 80% crossing an international boundary, while hawksbill turtles displayed higher post-release residency, with 66% remaining within UAE territorial waters. Amputee turtles moved similarly to non-amputee animals of the same species. Loggerhead turtles travelled faster (mean ± sd = 15.3 ± 8 km/day) than hawksbill turtles (9 ± 7 km/day). Both amputee and non-amputee sea turtles within a species moved similarly. Our tracking results highlight that rehabilitated sea turtles, including amputees, can successfully survive in the wild following release for up to our ~one-year monitoring time therefore supporting the suitability for release of sea turtles that have recovered from major injuries such as amputations. However, more broadly, the high mortality from anthropogenic factors in the Arabian Gulf region is clearly a serious issue and conservation challenge.
Assuntos
Conservação dos Recursos Naturais , Tartarugas , Animais , Feminino , Comunicações Via SatéliteRESUMO
Extinctions on land are often inferred from sparse sightings over time, but this technique is ill-suited for wide-ranging species. We develop a space-for-time approach to track the spatial contraction and drivers of decline of sawfishes. These iconic and endangered shark-like rays were once found in warm, coastal waters of 90 nations and are now presumed extinct in more than half (n = 46). Using dynamic geography theory, we predict that sawfishes are gone from at least nine additional nations. Overfishing and habitat loss have reduced spatial occupancy, leading to local extinctions in 55 of the 90 nations, which equates to 58.7% of their historical distribution. Retention bans and habitat protections are urgently necessary to secure a future for sawfishes and similar species.
RESUMO
The scale and drivers of marine biodiversity loss are being revealed by the International Union for Conservation of Nature (IUCN) Red List assessment process. We present the first global reassessment of 1,199 species in Class Chondrichthyes-sharks, rays, and chimeras. The first global assessment (in 2014) concluded that one-quarter (24%) of species were threatened. Now, 391 (32.6%) species are threatened with extinction. When this percentage of threat is applied to Data Deficient species, more than one-third (37.5%) of chondrichthyans are estimated to be threatened, with much of this change resulting from new information. Three species are Critically Endangered (Possibly Extinct), representing possibly the first global marine fish extinctions due to overfishing. Consequently, the chondrichthyan extinction rate is potentially 25 extinctions per million species years, comparable to that of terrestrial vertebrates. Overfishing is the universal threat affecting all 391 threatened species and is the sole threat for 67.3% of species and interacts with three other threats for the remaining third: loss and degradation of habitat (31.2% of threatened species), climate change (10.2%), and pollution (6.9%). Species are disproportionately threatened in tropical and subtropical coastal waters. Science-based limits on fishing, effective marine protected areas, and approaches that reduce or eliminate fishing mortality are urgently needed to minimize mortality of threatened species and ensure sustainable catch and trade of others. Immediate action is essential to prevent further extinctions and protect the potential for food security and ecosystem functions provided by this iconic lineage of predators.
Assuntos
Tubarões , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Extinção Biológica , PesqueirosRESUMO
This study evaluates local-scale drivers of shark harvests in India, one of the world's largest shark fishing nations. Focusing on key harbours in the states of Gujarat and Maharashtra, which together contribute 54% of India's shark harvest, this study uses a semi-structured survey to examine the practices of shark fishers and traders, their knowledge of shark trade and policy, and perceptions of shark declines. Findings indicate that a domestic market for shark meat is presently the main local driver for harvests rather than the global trade in shark fins. Sharks are mostly non-target catch, landed whole, contributing to the protein needs of coastal communities. Consumer demand is the greatest for small-bodied and juvenile sharks. Perceived steep declines in shark numbers and sizes have had economic impacts on fishers and traders. The unregulated domestic market for shark meat is a key challenge requiring nuanced local approaches that diverge from global shark conservation priorities.
Assuntos
Pesqueiros , Tubarões , Adolescente , Animais , Conservação dos Recursos Naturais , Índia , Alimentos MarinhosRESUMO
Detailed information on shark and ray fisheries in the Andaman and Nicobar Islands, India are limited, including information on the diversity and biological characteristics of these species. We carried out fish landing surveys in South Andamans from January 2017 to May 2018, a comprehensive and cost-effective way to fill this data gap. We sampled 5,742 individuals representing 57 shark and ray species landed from six types of fishing gears. Of the 36 species of sharks and 21 species of rays landed, six species of sharks (Loxodon macrorhinus, Carcharhinus amblyrhynchos, Sphyrna lewini, C. albimarginatus, C. brevipinna, and Paragaleus randalli) comprised 83.35% of shark landings, while three species of rays (Pateobatis jenkinsii, Himantura leoparda and H. tutul) comprised 48.82% of ray landings, suggesting a species dominance in the catch or fishing region. We provide insights into the biology of species with extensions in maximum size for seven shark species. Additionally, we document an increase in the known ray diversity for the islands and for India with three previously unreported ray species. We found that amongst sharks, mature individuals of small-bodied species (63.48% males of total landings of species less than 1.5 m total length when mature) and immature individuals of larger species (84.79% males of total landings of species larger than 1.5 m total length when mature) were mostly landed; whereas for rays, mature individuals were predominantly landed (80.71% males of total landings) likely reflecting differences in habitat preferences along life-history stages across species and fishing gear. The largest size range in sharks was recorded in landings from pelagic longlines and gillnets. Further, the study emphasizes the overlap between critical habitats and fishing grounds, where immature sharks and gravid females were landed in large quantities which might be unsustainable in the long-term. Landings were female-biased in C. amblyrhynchos, S. lewini and P. jenkinsii, and male-biased in L. macrorhinus and H. leoparda, indicating either spatio-temporal or gear-specific sexual segregation in these species. Understanding seasonal and biological variability in the shark and ray landings over a longer study period across different fisheries will inform future conservation and fishery management measures for these species in the Andaman and Nicobar Islands.
Assuntos
Tubarões/classificação , Tubarões/fisiologia , Rajidae/classificação , Rajidae/fisiologia , Animais , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Feminino , Pesqueiros , Índia , Masculino , Densidade Demográfica , Especificidade da EspécieRESUMO
The diversity of sharks occurring off the Andaman and Nicobar Archipelago in India has received increased attention in recent years. Yet, available checklists are out of date, often with inaccurate information and a number of commercially important species have not been documented through research and fish landing surveys. Here we report on shark species examined during fish landing surveys conducted from January 2017 to April 2018. Records of twelve previously unreported species from the archipelago are presented and include the bignose shark (Carcharhinus altimus), pigeye shark (Carcharhinus amboinensis), bull shark (Carcharhinus leucas), snaggletooth shark (Hemipristis elongata), slender weasel shark (Paragaleus randalli), Arabian smoothhound shark (Mustelus mosis), Indonesian houndshark (Hemitriakis indroyonoi), sand tiger shark (Carcharias taurus), Indonesian bambooshark (Chiloscyllium hasseltii), tawny nurse shark (Nebrius ferrugineus), dwarf gulper shark (Centrophorus atromarginatus), and the Indonesian shortsnout spurdog (Squalus hemipinnis). These records increase the reported shark species for the archipelago from 47 to 59 and for India from 114 to 116. Additionally, a size extension in the total length of C. hasseltii by 27 cm and of P. randalli by 8 cm is reported. Owing to the bio-geographical location of these islands, species diversity around the archipelago is unique and appears to overlap with that of southeast Asia. With increasing reports of over-exploitation and the operation of a targeted shark fishery by distant water fleets in these waters, the limited information on shark diversity from this region is of concern. Systematic and long-term monitoring of catches, combined with accurate species identification, is crucial to provide information on management measures.
RESUMO
Data on the diversity and relative abundance of elasmobranchs (sharks and rays) in the Arabian Gulf have been limited to fishery-dependent monitoring of landing sites. Understanding the diversity and abundance of sharks and rays is, however, crucial to inform policy and management plans. Baited Remote Underwater Video Surveys (BRUVS) were conducted in 2015-2016 across the United Arab Emirates Arabian Gulf waters encompassing a range of depths and habitat types. Data from 278 BRUVS (757 hours soak time) were analysed to gather information on diversity, relative abundance, species distribution, and habitat associations. Surveys recorded 213 individuals from 20 species of sharks and rays at 129 stations. The frequency of occurrence of species usually discarded by fishers such as the Arabian carpetshark (Chiloscyllium arabicum) and stingrays (Himantura spp.) was high, accounting for 60.5% of observed elasmobranchs. Despite the large survey area covered and extensive sampling effort, the relative abundance of sharks and rays was low at 0.28 elasmobranchs per hour, 0.13 sharks per hour, and 0.15 rays per hour. This CPUE was reduced to one of lowest recorded abundance on BRUVS from around the world when removing the two discarded species from the analysis (0.11 elasmobranchs per hour). These results likely reflect the intense fishing pressure and habitat loss contributing to population declines of many elasmobranchs in the Arabian Gulf. Findings provide a baseline for future work and can support the design of conservation strategies for sharks and rays in the UAE.
Assuntos
Espécies em Perigo de Extinção/estatística & dados numéricos , Tubarões/fisiologia , Animais , Biomassa , Emirados Árabes Unidos , Gravação em Vídeo/métodosRESUMO
We collected movement data for eight rehabilitated and satellite-tagged green sea turtles Chelonia mydas released off the United Arab Emirates between 2005 and 2013. Rehabilitation periods ranged from 96 to 1353 days (mean = 437 ± 399 days). Seven of the eight tagged turtles survived after release; one turtle was killed by what is thought to be a post-release spear gun wound. The majority of turtles (63%) used shallow-water core habitats and established home ranges between Dubai and Abu Dhabi, the same area in which they had originally washed ashore prior to rescue. Four turtles made movements across international boundaries, highlighting that regional cooperation is necessary for the management of the species. One turtle swam from Fujairah to the Andaman Sea, a total distance of 8283 km, which is the longest published track of a green turtle. This study demonstrates that sea turtles can be successfully reintroduced into the wild after sustaining serious injury and undergoing prolonged periods of intense rehabilitation.
Assuntos
Migração Animal/fisiologia , Comunicações Via Satélite , Tartarugas/fisiologia , Animais , Ecossistema , Comportamento de Retorno ao Território Vital , Estações do Ano , Especificidade da Espécie , Temperatura , Fatores de Tempo , Emirados Árabes UnidosRESUMO
The Arabian Gulf is the warmest sea in the world and is host to a globally significant population of the whale shark Rhincodon typus. To investigate regional whale shark behaviour and movements, 59 satellite-linked tags were deployed on whale sharks in the Al Shaheen area off Qatar from 2011-14. Four different models of tag were used throughout the study, each model able to collect differing data or quantities of data. Retention varied from one to 227 days. While all tagged sharks crossed international maritime boundaries, they typically stayed within the Arabian Gulf. Only nine sharks dispersed through the narrow Strait of Hormuz into the Gulf of Oman. Most sharks stayed close to known or suspected feeding aggregation sites over summer months, but dispersed throughout the Arabian Gulf in winter. Sharks rarely ventured into shallow areas (<40 m depth). A single, presumably pregnant female shark was the sole animal to disperse a long distance, crossing five international maritime boundaries in 37 days before the tag detached at a distance of approximately 2644 km from the tagging site, close to the Yemeni-Somali border. No clear space-use differentiation was evident between years, for sharks of different sizes, or between sexes. Whale sharks spent the most time (~66%) in temperatures of 24-30°C and in shallow waters <100 m depth (~60%). Sharks spent relatively more time in cooler (X2 = 121.692; p<0.05) and deeper (X2 = 46.402; p<0.05) water at night. Sharks rarely made dives deeper than 100 m, reflecting the bathymetric constraints of the Gulf environment. Kernel density analysis demonstrated that the tagging site at Al Shaheen was the regional hotspot for these sharks, and revealed a probable secondary aggregation site for whale sharks in nearby Saudi Arabian waters. Analysis of visual re-sightings data of tagged sharks revealed that 58% of tagged individuals were re-sighted back in Al Shaheen over the course of this study, with 40% recorded back at Al Shaheen in the year following their initial identification. Two sharks were confirmed to return to Al Shaheen in each of the five years of study.