RESUMO
Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18-21 and are established driver mutations in non-small cell lung cancer (NSCLC)1-3. Targeted therapies are approved for patients with 'classical' mutations and a small number of other mutations4-6. However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown1,3,7-10. Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure-function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure-function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Afatinib/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Éxons , Feminino , Humanos , Neoplasias Pulmonares/genética , Camundongos , Simulação de Acoplamento Molecular , Mutação , Relação Estrutura-AtividadeRESUMO
INTRODUCTION: Immune checkpoint inhibitor (ICI) pneumonitis causes substantial morbidity and mortality. Estimates of real-world incidence and reported risk factors vary substantially. METHODS: We conducted a retrospective review of 419 patients with advanced non-small cell lung cancer (NSCLC) who were treated with anti-PD-(L)1 with or without anti-CTLA-4 therapy. Clinical, imaging, and microbiological data were evaluated by multidisciplinary adjudication teams. The primary outcome of interest was grade ≥2 (CTCAEv5) pneumonitis. Clinicopathologic variables, tobacco use, cancer therapies, and preexisting lung disease were assessed for univariate effects using Cox proportional hazards models. We created multivariate Cox proportional hazards models to assess risk factors for pneumonitis and mortality. Pneumonitis, pneumonia, and progression were modeled as time-dependent variables in mortality models. RESULTS: We evaluated 419 patients between 2013 and 2021. The cumulative incidence of pneumonitis was 9.5% (40/419). In a multivariate model, pneumonitis increased the risk for mortality (HR 1.6, 95% CI, 1.0-2.5), after adjustment for disease progression (HR 1.6, 95% CI, 1.4-1.8) and baseline shortness of breath (HR 1.5, 95% CI, 1.2-2.0). Incomplete resolution was more common with more severe pneumonitis. Interstitial lung disease was associated with higher risk for pneumonitis (HR 5.4, 95% CI, 1.1-26.6), particularly in never smokers (HR 26.9, 95% CI, 2.8-259.0). CONCLUSION: Pneumonitis occurred at a high rate and significantly increased mortality. Interstitial lung disease, particularly in never smokers, increased the risk for pneumonitis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Pneumonia , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Incidência , Neoplasias Pulmonares/tratamento farmacológico , Pneumonia/epidemiologia , Fatores de Risco , Doenças Pulmonares Intersticiais/complicações , Estudos RetrospectivosRESUMO
BACKGROUND: Gene expression profiling has consistently identified three molecular subtypes of lung adenocarcinoma that have prognostic implications. To facilitate stratification of patients with this disease into similar molecular subtypes, we developed and validated a simple, mutually exclusive classification. METHODS: Mutational status of EGFR, KRAS, and TP53 was used to define seven mutually exclusive molecular subtypes. A development cohort of 283 cytology specimens of lung adenocarcinoma was used to evaluate the associations between the proposed classification and clinicopathologic variables including demographic characteristics, smoking history, fluorescence in situ hybridization and molecular results. For validation and prognostic assessment, 63 of the 283 cytology specimens with available survival data were combined with a separate cohort of 428 surgical pathology specimens of lung adenocarcinoma. RESULTS: The proposed classification yielded significant associations between these molecular subtypes and clinical and prognostic features. We found better overall survival in patients who underwent surgery and had tumors enriched for EGFR mutations. Worse overall survival was associated with older age, stage IV disease, and tumors with co-mutations in KRAS and TP53. Interestingly, neither chemotherapy nor radiation therapy showed benefit to overall survival. CONCLUSIONS: The mutational status of EGFR, KRAS, and TP53 can be used to easily classify lung adenocarcinoma patients into seven subtypes that show a relationship with prognosis, especially in patients who underwent surgery, and these subtypes are similar to classifications based on more complex genomic methods reported previously.
Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Receptores ErbB/genética , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Mutação , Medicina de Precisão , Prognóstico , Estudos Retrospectivos , Análise de Sequência de DNA , Análise de SobrevidaRESUMO
INTRODUCTION: Amivantamab-vmjw (amivantamab) is a bispecific EGFR/MET antibody approved for patients with advanced NSCLC with EGFR exon 20 insertion mutations, after prior therapy. Nevertheless, the benefits and safety of amivantamab in other EGFR-mutant lung cancer, with or without osimertinib, and with concurrent radiation therapy, are less known. METHODS: We queried the MD Anderson Lung Cancer GEMINI, Fred Hutchinson Cancer Research Center, University of California Davis Comprehensive Cancer Center, and Stanford Cancer Center's database for patients with EGFR-mutant NSCLC treated with amivantamab, not on a clinical trial. The data analyzed included initial response, duration of treatment, and concomitant radiation safety in overall population and prespecified subgroups. RESULTS: A total of 61 patients received amivantamab. Median age was 65 (31-81) years old; 72.1% were female; and 77% were patients with never smoking history. Median number of prior lines of therapies was four. On the basis of tumor's EGFR mutation, 39 patients were in the classical mutation cohort, 15 patients in the exon 20 cohort, and seven patients in the atypical cohort. There were 37 patients (58.7%) who received amivantamab concomitantly with osimertinib and 25 patients (39.1%) who received concomitant radiation. Furthermore, 54 patients were assessable for response in the overall population; 19 patients (45.2%) had clinical response and disease control rate (DCR) was 64.3%. In the classical mutation cohort of the 33 assessable patients, 12 (36.4%) had clinical response and DCR was 48.5%. In the atypical mutation cohort, six of the seven patients (85.7%) had clinical response and DCR was 100%. Of the 13 assessable patients in the exon 20 cohort, five patients (35.7%) had clinical response and DCR was 64.3%. Adverse events reported with amivantamab use were similar as previously described in product labeling. No additional toxicities were noted when amivantamab was given with radiation with or without osimertinib. CONCLUSIONS: Our real-world multicenter analysis revealed that amivantamab is a potentially effective treatment option for patients with EGFR mutations outside of exon 20 insertion mutations. The combination of osimertinib with amivantamab is safe and feasible. Radiation therapy also seems safe when administered sequentially or concurrently with amivantamab.
Assuntos
Acrilamidas , Anticorpos Biespecíficos , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Feminino , Idoso , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , Antineoplásicos/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Introduction: NSCLC transformation to SCLC has been best characterized with EGFR-mutant NSCLC, with emerging case reports seen in ALK, RET, and KRAS-altered NSCLC. Previous reports revealed transformed SCLC from EGFR-mutant NSCLC portends very poor prognosis and lack effective treatment. Genomic analyses revealed TP53 and RB1 loss of function increase the risk of SCLC transformation. Little has been reported on the detailed clinicogenomic characteristics and potential therapeutic targets for this patient population. Methods: In this study, we conducted a single-center retrospective analysis of clinical and genomic characteristics of patients with EGFR-mutant NSCLC transformed to SCLC. Demographic data, treatment course, and clinical molecular testing reports were extracted from electronic medical records. Kaplan-Meier analyses were used to estimate survival outcomes. Next generation sequencing-based assays was used to identify EGFR and co-occurring genetic alterations in tissue or plasma before and after SCLC transformation. Single-cell RNA sequencing (scRNA-seq) was performed on a patient-derived-xenograft model generated from a patient with EGFR-NSCLC transformed SCLC tumor. Results: A total of 34 patients were identified in our study. Median age at initial diagnosis was 58, and median time to SCLC transformation was 24.2 months. 68% were female and 82% were never smokers. 79% of patients were diagnosed as stage IV disease, and over half had brain metastases at baseline. Median overall survival of the entire cohort was 38.3 months from initial diagnoses and 12.4 months from time of SCLC transformation. Most patients harbored EGFR exon19 deletions as opposed to exon21 L858R alteration. Continuing EGFR tyrosine kinase inhibitor post-transformation did not improve overall survival compared with those patients where tyrosine kinase inhibitor was stopped in our cohort. In the 20 paired pretransformed and post-transformed patient samples, statistically significant enrichment was seen with PIK3CA alterations (p = 0.04) post-transformation. Profiling of longitudinal liquid biopsy samples suggest emergence of SCLC genetic alterations before biopsy-proven SCLC, as shown by increasing variant allele frequency of TP53, RB1, PIK3CA alterations. ScRNA-seq revealed potential therapeutic targets including DLL3, CD276 (B7-H3) and PTK7 were widely expressed in transformed SCLC. Conclusions: SCLC transformation is a potential treatment resistance mechanism in driver-mutant NSCLC. In our cohort of 34 EGFR-mutant NSCLC, poor prognosis was observed after SCLC transformation. Clinicogenomic analyses of paired and longitudinal samples identified genomic alterations emerging post-transformation and scRNA-seq reveal potential therapeutic targets in this population. Further studies are needed to rigorously validate biomarkers and therapeutic targets for this patient population.
RESUMO
PURPOSE: Local consolidative therapy (LCT) for patients with synchronous oligometastatic non-small-cell lung cancer is an evolving treatment strategy, but outcomes following LCT stratified by genetic mutations have not been reported. We sought to identify genomic associations with overall survival (OS) and progression-free survival (PFS) for these patients. METHODS: We identified all patients presenting between 2000 and 2017 with stage IV non-small-cell lung cancer and ≤ 3 synchronous metastatic sites. Patients were grouped according to mutational statuses. Primary outcomes included OS and PFS following initial diagnosis. RESULTS: Of 194 included patients, 121 received comprehensive LCT to all sites of disease with either surgery or radiation. TP53 mutations were identified in 40 of 78 (55%), KRAS in 32 of 95 (34%), EGFR in 24 of 109 (22%), and STK11 in nine of 77 (12%). At median follow-up of 96 months, median OS and PFS were 26 (95% CI, 23 to 31) months and 11 (95% CI, 9 to 13) months, respectively. On multivariable analysis, patients with EGFR mutations had lower mortality risk (hazard ratio [HR], 0.53; 95% CI, 0.29 to 0.98; P = .044) compared with wild-type patients, and patients with STK11 mutations had higher risk of progression or mortality (HR, 2.32; 95% CI, 1.12 to 4.79; P = .023) compared with wild-type patients. TP53 and KRAS mutations were not associated with OS or PFS. Among 71 patients with known EGFR mutational status who received comprehensive LCT, EGFR mutations were associated with lower mortality compared with wild-type (HR, 0.45; 95% CI, 0.22 to 0.94; P = .032). CONCLUSION: When compared with wild-type patients, those with EGFR and STK11 mutations had longer OS and shorter PFS, respectively. EGFR mutations were associated with longer OS among oligometastatic patients treated with comprehensive LCT in addition to systemic therapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Benchmarking , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Receptores ErbB/genéticaRESUMO
Introduction: MET amplification is a known resistance mechanism to EGFR tyrosine kinase inhibitor (TKI) treatment in EGFR-mutant NSCLC. Dual EGFR-MET inhibition has been reported with success in overcoming such resistance and inducing clinical benefit. Resistance mechanisms to dual EGFR-MET inhibition require further investigation and characterization. Methods: Patients with NSCLC with both MET amplification and EGFR mutation who have received crizotinib, capmatinib, savolitinib, or tepotinib plus osimertinib (OSI) after progression on OSI at MD Anderson Cancer Center were included in this study. Molecular profiling was completed by means of fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS). Radiological response was assessed on the basis of Response Evaluation Criteria in Solid Tumors version 1.1. Results: From March 2016 to March 2022, 23 treatments with dual MET inhibitor and osi were identified with a total of 20 patients included. Three patients received capmatinib plus OSI after progression on crizotinib plus OSI. Median age was 64 (38-89) years old and 75% were female. MET amplification was detected by FISH in 14 patients in the tissue, NGS in 10 patients, and circulating tumor DNA in three patients. Median MET gene copy number was 13.6 (6.4-20). Overall response rate was 34.8% (eight of 23). In assessable patients, tumor shrinkage was observed in 82.4% (14 of 17). Median time on treatment was 27 months. Two of three patients responded to capmatinib plus OSI after progression on crizotinib plus OSI. Dual EGFR-MET inhibition was overall well tolerated. Two patients on crizotinib plus OSI and one pt on capmatinib plus OSI discontinued therapy due to pneumonitis. One pt discontinued crizotinib plus OSI due to gastrointestinal toxicity. Six patients were still on double TKI treatment. At disease progression to dual EGFR-MET inhibition, FISH and NGS on tumor and plasma were completed in six patients. Notable resistance mechanisms observed include acquired MET D1246H (n = 1), acquired EGFR C797S (n = 2), FGFR2 fusion (n = 1, concurrent with C797S), and EGFR G796S (n = 1, concurrent with C797S). Four patients lost MET amplification. Conclusions: Dual EGFR and MET inhibition yielded high clinical response rate after progression on OSI. Resistance mechanisms to EGFR-MET double TKI inhibition include MET secondary mutation, EGFR secondary mutation, or loss of MET amplification.
RESUMO
PURPOSE: Ataxia-telangiectasia mutated (ATM) is the most frequently mutated DNA damage repair gene in non-small cell lung cancer (NSCLC). However, the molecular correlates of ATM mutations and their clinical implications have not been fully elucidated. EXPERIMENTAL DESIGN: Clinicopathologic and genomic data from 26,587 patients with NSCLC from MD Anderson, public databases, and a de-identified nationwide (US-based) NSCLC clinicogenomic database (CGDB) were used to assess the co-mutation landscape, protein expression, and mutational processes in ATM-mutant tumors. We used the CGDB to evaluate ATM-associated outcomes in patients treated with immune checkpoint inhibitors (ICI) with or without chemotherapy, and assessed the effect of ATM loss on STING signaling and chemotherapy sensitivity in preclinical models. RESULTS: Nonsynonymous mutations in ATM were observed in 11.2% of samples (2,980/26,587) and were significantly associated with mutations in KRAS, but mutually exclusive with EGFR (q < 0.1). KRAS mutational status constrained the ATM co-mutation landscape, with strong mutual exclusivity with TP53 and KEAP1 within KRAS-mutated samples. Those ATM mutations that co-occurred with TP53 were more likely to be missense mutations and associate with high mutational burden, suggestive of non-functional passenger mutations. In the CGDB cohort, dysfunctional ATM mutations associated with improved OS only in patients treated with ICI-chemotherapy, and not ICI alone. In vitro analyses demonstrated enhanced upregulation of STING signaling in ATM knockout cells with the addition of chemotherapy. CONCLUSIONS: ATM mutations define a distinct subset of NSCLC associated with KRAS mutations, increased TMB, decreased TP53 and EGFR co-occurrence, and potential increased sensitivity to ICIs in the context of DNA-damaging chemotherapy.
Assuntos
Ataxia Telangiectasia , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator 2 Relacionado a NF-E2/genética , Mutação , Receptores ErbB/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismoRESUMO
The role of combination chemotherapy with immune checkpoint inhibitors (ICI) (ICI-chemo) over ICI monotherapy (ICI-mono) in non-small cell lung cancer (NSCLC) remains underexplored. In this retrospective study of 1133 NSCLC patients, treatment with ICI-mono vs ICI-chemo associate with higher rates of early progression, but similar long-term progression-free and overall survival. Sequential vs concurrent ICI and chemotherapy have similar long-term survival, suggesting no synergism from combination therapy. Integrative modeling identified PD-L1, disease burden (Stage IVb; liver metastases), and STK11 and JAK2 alterations as features associate with a higher likelihood of early progression on ICI-mono. CDKN2A alterations associate with worse long-term outcomes in ICI-chemo patients. These results are validated in independent external (n = 89) and internal (n = 393) cohorts. This real-world study suggests that ICI-chemo may protect against early progression but does not influence overall survival, and nominates features that identify those patients at risk for early progression who may maximally benefit from ICI-chemo.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Retrospectivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quimioterapia CombinadaRESUMO
Molecular modifiers of KRASG12C inhibitor (KRASG12Ci) efficacy in advanced KRASG12C-mutant NSCLC are poorly defined. In a large unbiased clinicogenomic analysis of 424 patients with non-small cell lung cancer (NSCLC), we identified and validated coalterations in KEAP1, SMARCA4, and CDKN2A as major independent determinants of inferior clinical outcomes with KRASG12Ci monotherapy. Collectively, comutations in these three tumor suppressor genes segregated patients into distinct prognostic subgroups and captured â¼50% of those with early disease progression (progression-free survival ≤3 months) with KRASG12Ci. Pathway-level integration of less prevalent coalterations in functionally related genes nominated PI3K/AKT/MTOR pathway and additional baseline RAS gene alterations, including amplifications, as candidate drivers of inferior outcomes with KRASG12Ci, and revealed a possible association between defective DNA damage response/repair and improved KRASG12Ci efficacy. Our findings propose a framework for patient stratification and clinical outcome prediction in KRASG12C-mutant NSCLC that can inform rational selection and appropriate tailoring of emerging combination therapies. SIGNIFICANCE: In this work, we identify co-occurring genomic alterations in KEAP1, SMARCA4, and CDKN2A as independent determinants of poor clinical outcomes with KRASG12Ci monotherapy in advanced NSCLC, and we propose a framework for patient stratification and treatment personalization based on the comutational status of individual tumors. See related commentary by Heng et al., p. 1513. This article is highlighted in the In This Issue feature, p. 1501.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , DNA Helicases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Only around 20-30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS: In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK negative NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS: Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION: This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer. FUNDING: National Institutes of Health, Mark Foundation Damon Runyon Foundation Physician Scientist Award, MD Anderson Strategic Initiative Development Program, MD Anderson Lung Moon Shot Program, Andrea Mugnaini, and Edward L C Smith.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Estados Unidos , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
Importance: Consolidative durvalumab after definitive chemoradiation for unresectable locally advanced non-small cell lung cancer (NSCLC) can significantly improve progression-free survival (PFS) and overall survival (OS), as shown in the PACIFIC trial. However, whether patients with driver variations derive equal benefit from this regimen remains unclear. Objectives: To compare outcomes of patients with locally advanced NSCLC with and without driver variations treated with the PACIFIC regimen. Design, Setting, and Participants: This cohort study examined 104 patients with unresectable locally advanced NSCLC with mutational profiling treated at a tertiary cancer center with definitive chemoradiation and consolidative durvalumab from June 2017 through May 2020. Patients with recurrent disease or those receiving postoperative therapy were excluded. Outcomes were analyzed with Kaplan-Meier and multivariate regression analyses. Exposures: Patients were grouped according to the presence of non-KRAS driver variations (EGFR exon 19 deletion, EGFR exon 20 insertion, EGFR exon 21 mutation [L858R], ERBB2 exon 20 insertion, EML4-ALK fusion, MET exon 14 skipping, NTRK2 fusion), KRAS driver variations, or no driver variations. Main Outcomes and Measures: The primary outcomes were PFS, OS, and second progression-free survival (PFS2) times. Results: The 104 patients had a median (IQR) age of 65.1 (9.8) years, with 55 females (53%) and 85 former or current smokers (88%). There were 43 patients (41%) with driver variations with a median PFS time of 8.4 months vs 40.1 months for patients without driver variations (hazard ratio [HR], 2.75; 95% CI, 1.64-4.62; log-rank P < .001). Both patients with non-KRAS and KRAS driver variations had worse PFS. No difference in OS was found between patients with and without driver variations (log rank P = .24). Among the 63 patients who developed progressive disease, those with non-KRAS driver variations had a median PFS2 time of 13.7 months vs 4.4 months for all other patients (HR, 0.37; 95% CI, 0.21-0.64; log-rank P = .001). Rates of overall grade 2 toxic effects or higher did not differ by driver mutation status. Conclusions and Relevance: In this cohort study, driver variations in patients with unresectable locally advanced NSCLC were associated with significantly shorter PFS time after definitive chemoradiation and consolidative durvalumab. These findings suggest the need to consider additional or alternative treatment options to the PACIFIC regimen for patients with driver variations.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Idoso , Anticorpos Monoclonais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Estudos de Coortes , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
INTRODUCTION: As a result of the approval of several immune checkpoint inhibitors (ICIs) for the treatment of non-small cell lung cancer (NSCLC), many older adults are being treated with ICIs. Older adults are underrepresented in most pharmaceutical clinical trials. Therapy outcomes in this population with ICIs is particularly important since, age related factors may have an influence on the immune system. METHODS: We utilized the MD Anderson Cancer Center Gemini Team's Lung Cancer Database to retrospectively study patients ≥70 years of age with advanced NSCLC treated with anti-PD-(L)1 monotherapy to look at the clinical outcomes. RESULTS: 179 patients met the inclusion criteria for this retrospective analysis. There were 106 men and 73 women. The median age of the cohort was 74.9 years, and overall survival was 20.6 months. 27.6% of all patients had an objective response to therapy. In 33 patients who had radiological progression, treatment continued beyond progression due to clinical benefit. In this group, 6 patients had subsequent improvement in radiologic assessment. Age groups were not significantly associated with differences in clinical outcomes. CONCLUSIONS: This study suggests that anti-PD-(L)1 monotherapy is effective and well tolerated among older adults with advanced NSCLC. While pseudoprogression is rare, treatment beyond progression may provide clinical benefit in a subset of patients and warrants further investigation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Idoso , Antígeno B7-H1 , Feminino , Humanos , Masculino , Estudos Retrospectivos , Resultado do TratamentoRESUMO
BACKGROUND: The benefit of chemotherapy combined with immunotherapy in EGFR-mutant lung adenocarcinoma (LUAD) patients whose tumor developed resistance to EGFR tyrosine kinase inhibitors (TKIs) is not thoroughly investigated. The goal of this retrospective cohort study is to assess the clinical efficiency of immunotherapy alone or in combination with chemotherapy in a real-world setting. METHODS: This retrospective cohort study enrolled LUAD patients with EGFR sensitive mutations whose tumor had acquired resistance to EGFR TKIs and received systemic treatment with chemotherapy (chemo; n = 84), chemotherapy combined with immunotherapy (chemoIO; n = 30), chemotherapy plus bevacizumab with or without IO (withBev; n = 42), and IO monotherapy (IO-mono; n = 22). Clinical progression-free survival (PFS) and overall survival (OS) were evaluated. Associations of clinical characteristics with outcomes were assessed using univariable and multi-covariate Cox Proportional Hazards regression models. RESULTS: A total of 178 patients (median age = 63.3; 57.9% females) with a median follow-up time of 42.0 (Interquartile range: 22.9-67.8) months were enrolled. There was no significant difference in PFS between chemoIO vs. chemo groups (5.3 vs. 4.8 months, p = 0.8). Compared to the chemo group, patients who received withBev therapy trended towards better PFS (6.1 months vs. 4.8; p = 0.3; HR 0.79; 95% CI: 0.52-1.20), while patients treated with IO-mono had inferior PFS (2.2 months; p = 0.001; HR 2.22; 95% CI: 1.37-3.59). Furthermore, PD-L1 level was not associated with PFS benefit in the chemoIO group. Patients with EGFR-mutant LUAD with high PD-L1 (≥50%) had shorter PFS (5.8 months) than non-EGFR/ALK LUAD patients who received chemoIO (12.8 months, p = 0.002; HR 0.22; 95% CI: 0.08-0.56) as first-line treatment. Chemotherapy-based therapy rendered similar benefit to patients with either EGFR exon19 deletion vs. L858R in the LUAD. CONCLUSIONS: This retrospective analysis revealed that immunotherapy provided limited additional benefit to chemotherapy in TKI-refractory EGFR-mutant LUAD. Chemotherapy alone or combined with bevacizumab remain good choices for patients with actionable EGFR mutations.
RESUMO
Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAPdef) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAPdef urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAPdef patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAPdef patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAPdef associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAPdef and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials.
Assuntos
Carcinoma de Células de Transição , Antagonistas do Ácido Fólico , Neoplasias da Bexiga Urinária , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Estudos Prospectivos , Estudos RetrospectivosRESUMO
INTRODUCTION: The efficacy of targeted therapies in oncogene-driven lung adenocarcinomas (LUADs) has been well established; however, the benefit for EGFR-mutant or ALK-rearranged lung squamous cell carcinomas (LUSCs) is less known, partially owing to the rarity of the incidence. METHODS: We reviewed the database of the MD Anderson Cancer Center and identified metastatic LUSC with classic EGFR or ALK alterations. RESULTS: There were eight patients with EGFR-mutant LUSC (median age = 58 y) and six patients with EML4-ALK LUSC (median age = 50 y) who received tyrosine kinase inhibitors (TKIs) that were identified. Of the 14 patients, 11 (79%) were females and 12 (86%) were never smokers, similar to the demographics of EGFR or ALK LUAD. With TKI treatment, seven of eight cases of EGFR LUSC and four of six cases of ALK LUSC achieved partial response or stable disease, but the progression-free survival was 4.9 months and 2.9 months for EGFR-mutant and ALK-rearranged LUSC, respectively. In addition, we compared comutation profile of EGFR-mutant LUAD (The Cancer Genome Atlas, n = 46) versus LUSC (n = 19) and found that the comutation patterns are more consistent with squamous disease with a higher incidence of PIK3CA (p = 0.02) and KRAS or BRAF (p = 0.04) alterations. CONCLUSIONS: EGFR or ALK alterations occur in patients with LUSC, especially never-smoker females. TKI treatments render clinical benefit in disease control, but the duration was considerably truncated compared with those historically observed in LUAD.
RESUMO
PURPOSE: Radiotherapy with or without chemotherapy is a mainstay of treatment for locally advanced non-small cell lung cancer (NSCLC), but no predictive markers are currently available to select patients who will benefit from these therapies. In this study, we investigated the association between alterations in STK11/LKB1, the second most common tumor suppressor in NSCLC, and response to radiotherapy as well as potential therapeutic approaches to improve outcomes. EXPERIMENTAL DESIGN: We conducted a retrospective analysis of 194 patients with stage I-III NSCLC, including 164 stage III patients bearing mutant or wild-type STK11/LKB1 treated with radiotherapy, and assessed locoregional recurrence (LRR), distant metastasis rates, disease-free survival (DFS), and overall survival (OS), and we investigated the causal role of LKB1 in mediating radiotherapy resistance using isogenic pairs of NSCLC cell lines with LKB1 loss or gain. RESULTS: In stage III patients, with 4 years median follow-up, STK11/LKB1 mutations were associated with higher LRR (P = 0.0108), and shorter DFS (HR 2.530, P = 0.0029) and OS (HR 2.198, P = 0.0263). LKB1 loss promoted relative resistance to radiotherapy, which was dependent on the KEAP1/NRF2 pathway for redox homeostasis. Suppression of the KEAP1/NRF2 pathway via KEAP1 expression, or pharmacologic blockade of glutaminase (GLS) 1 sensitized LKB1-deficient tumors to radiotherapy. CONCLUSIONS: These data provide evidence that LKB1 loss is associated with LRR and poor clinical outcomes in patients with NSCLC treated with radiotherapy and that targeting the KEAP1/NRF2 pathway or GLS inhibition are potential approaches to radiosensitize LKB1-deficient tumors.
Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Glutaminase/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/radioterapia , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Feminino , Seguimentos , Raios gama/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Prognóstico , Radioterapia/efeitos adversos , Estudos Retrospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: The main goal of management in patients with non-small cell lung cancer (NSCLC) and malignant pleural effusion (MPE) is palliation. Patients with MPE and actionable mutations, because their disease is expected to respond quickly and markedly to targeted therapy, are less likely than those without actionable mutations to receive definitive MPE management. Whether such management is indicated in these patients is unclear. RESEARCH QUESTIONS: What is the time to ipsilateral MPE recurrence requiring intervention in patients with metastatic NSCLC by mutation status? What are the risk factors for MPE recurrence? STUDY DESIGN AND METHODS: Retrospective cohort study of consecutive patients who underwent initial thoracentesis for MPE. We used a Fine-Gray subdistribution hazard model to calculate the time to ipsilateral MPE recurrence requiring intervention within 100 days of initial thoracentesis and to identify variables associated with time to pleural fluid recurrence. RESULTS: A total of 396 patients, comprising 295 (74.5%) without and 101 (25.5%) with actionable mutations, were included. Most patients with actionable mutations (90%) were receiving targeted treatment within 30 days of initial thoracentesis. On univariate analysis, patients with actionable mutations showed a significantly higher hazard of MPE recurrence. On multivariate analysis, this difference was not significant. Larger pleural effusion size on chest radiography (P < .001), higher pleural fluid lactate dehydrogenase (P < .001), and positive cytologic examination results (P = .008) were associated with an increased hazard of recurrence. INTERPRETATION: Our findings indicate that patients with actionable mutations have a similar risk of MPE recurrence when compared with patients without mutations and would benefit from a similar definitive management approach to MPE.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Retratamento , Toracentese , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Cuidados Paliativos/métodos , Administração dos Cuidados ao Paciente/métodos , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/etiologia , Derrame Pleural Maligno/terapia , Radiografia Torácica/métodos , Recidiva , Retratamento/métodos , Retratamento/estatística & dados numéricos , Medição de Risco/métodos , Fatores de Risco , Toracentese/métodos , Toracentese/estatística & dados numéricos , Fatores de TempoRESUMO
PURPOSE: To compare clinical outcomes in a cohort of patients with advanced non-small-cell lung cancer (NSCLC) with targetable genomic alterations detected using plasma-based circulating tumor DNA (ctDNA) or tumor-based next-generation sequencing (NGS) assays treated with US Food and Drug Administration-approved therapies at a large academic research cancer center. METHODS: A retrospective review from our MD Anderson GEMINI database identified 2,224 blood samples sent for ctDNA NGS testing from 1971 consecutive patients with a diagnosis of advanced NSCLC. Clinical, treatment, and outcome information were collected, reviewed, and analyzed. RESULTS: Overall, 27% of the ctDNA tests identified at least one targetable mutation and 73% of targetable mutations were EGFR-sensitizing mutations. Among patients treated with first-line epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapies, there were no significant differences in progression-free survival of 379 days and 352 days (P value = .41) with treatment based on tissue (n = 40) or ctDNA (n = 40), respectively. Additionally, there were no differences in progression-free survival or objective response rate among those with low (n = 8, 0.01%-0.99%) versus high (n = 16, ≥ 1%) levels of ctDNA of the targetable mutation as measured by variant allele frequency (VAF). Overall, there was excellent testing concordance (n = 217 tests) of > 97%, sensitivity of 91.7%, and specificity of 99.7% between blood-based ctDNA NGS and tissue-based NGS assays. CONCLUSION: There were no significant differences in clinical outcomes among patients treated with approved EGFR-TKIs whose mutations were identified using either tumor- or plasma-based comprehensive profiling and those with very low VAF as compared with high VAF, supporting the use of plasma-based profiling to guide initial TKI use in patients with metastatic EGFR-mutant NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , DNA Tumoral Circulante/sangue , Genes erbB/genética , Neoplasias Pulmonares/sangue , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Feminino , Frequência do Gene , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Intervalo Livre de Progressão , Estudos RetrospectivosRESUMO
INTRODUCTION: Plasma-based circulating tumor DNA (ctDNA) is an established biomarker for molecular profiling with emerging applications in disease monitoring in multiple tumor types, including, NSCLC. However, determinants of ctDNA shedding and correlation with tumor burden are incompletely understood, particularly in advanced-stage disease. METHODS: We retrospectively analyzed ctDNA-based and tissue-based genomic data and imaging from 144 patients with NSCLC. Tumor burden was quantified with computed tomography (CT) and brain magnetic resonance imaging for the overall cohort and 18F-fludeoxyglucose positron emission tomography-CT in a subset of patients. RESULTS: There was a moderate but statistically significant correlation between ctDNA variant allele frequency and multiple imaging measures of tumor burden such as CT volume (rho = 0.34, p ≤ 0.0001) and metabolic tumor volume (rho = 0.36, p = 0.003). This correlation was strongest in KRAS-mutant tumors (rho = 0.56, p ≤ 0.001), followed by TP53 mutants (rho = 0.43, p ≤ 0.0001), and weakest in EGFR-mutated (EGFR+) tumors (rho = 0.24, p = 0.077). EGFR+ tumors with EGFR copy number gain had significantly higher variant allele frequency than EGFR+ without copy number gain (p ≤ 0.00001). In multivariable analysis, TP53 and EGFR mutations, visceral metastasis, and tumor burden were independent predictors of increased ctDNA shedding. CONCLUSIONS: Levels of detectable ctDNA were affected not only by tumor burden but also by tumor genotype. The genotype-specific differences observed may be due to variations in DNA shedding and cellular turnover. These findings have implications for the emerging use of ctDNA in NSCLC disease monitoring and early detection.