Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 296: 100384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556370

RESUMO

UTP-glucose-1-phosphate uridylyltransferases are enzymes that produce UDP-glucose from UTP and glucose-1-phosphate. In Bacillus subtilis 168, UDP-glucose is required for the decoration of wall teichoic acid (WTA) with glucose residues and the formation of glucolipids. The B. subtilis UGPase GtaB is essential for UDP-glucose production under standard aerobic growth conditions, and gtaB mutants display severe growth and morphological defects. However, bioinformatics predictions indicate that two other UTP-glucose-1-phosphate uridylyltransferases are present in B. subtilis. Here, we investigated the function of one of them named YngB. The crystal structure of YngB revealed that the protein has the typical fold and all necessary active site features of a functional UGPase. Furthermore, UGPase activity could be demonstrated in vitro using UTP and glucose-1-phosphate as substrates. Expression of YngB from a synthetic promoter in a B. subtilis gtaB mutant resulted in the reintroduction of glucose residues on WTA and production of glycolipids, demonstrating that the enzyme can function as UGPase in vivo. When WT and mutant B. subtilis strains were grown under anaerobic conditions, YngB-dependent glycolipid production and glucose decorations on WTA could be detected, revealing that YngB is expressed from its native promoter under anaerobic condition. Based on these findings, along with the structure of the operon containing yngB and the transcription factor thought to be required for its expression, we propose that besides WTA, potentially other cell wall components might be decorated with glucose residues during oxygen-limited growth condition.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Glicolipídeos/metabolismo , Ácidos Teicoicos/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Anaerobiose , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Cristalografia por Raios X/métodos , Glicosilação , Regiões Promotoras Genéticas , Ácidos Teicoicos/química , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/genética
2.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33229460

RESUMO

Lysozyme is an important component of the innate immune system. It functions by hydrolyzing the peptidoglycan (PG) layer of bacteria. The human pathogen Listeria monocytogenes is intrinsically lysozyme resistant. The peptidoglycan N-deacetylase PgdA and O-acetyltransferase OatA are two known factors contributing to its lysozyme resistance. Furthermore, it was shown that the absence of components of an ABC transporter, referred to here as EslABC, leads to reduced lysozyme resistance. How its activity is linked to lysozyme resistance is still unknown. To investigate this further, a strain with a deletion in eslB, coding for a membrane component of the ABC transporter, was constructed in L. monocytogenes strain 10403S. The eslB mutant showed a 40-fold reduction in the MIC to lysozyme. Analysis of the PG structure revealed that the eslB mutant produced PG with reduced levels of O-acetylation. Using growth and autolysis assays, we showed that the absence of EslB manifests in a growth defect in media containing high concentrations of sugars and increased endogenous cell lysis. A thinner PG layer produced by the eslB mutant under these growth conditions might explain these phenotypes. Furthermore, the eslB mutant had a noticeable cell division defect and formed elongated cells. Microscopy analysis revealed that an early cell division protein still localized in the eslB mutant, indicating that a downstream process is perturbed. Based on our results, we hypothesize that EslB affects the biosynthesis and modification of the cell wall in L. monocytogenes and is thus important for the maintenance of cell wall integrity.IMPORTANCE The ABC transporter EslABC is associated with the intrinsic lysozyme resistance of Listeria monocytogenes However, the exact role of the transporter in this process and in the physiology of L. monocytogenes is unknown. Using different assays to characterize an eslB deletion strain, we found that the absence of EslB affects not only lysozyme resistance but also endogenous cell lysis, cell wall biosynthesis, cell division, and the ability of the bacterium to grow in media containing high concentrations of sugars. Our results indicate that EslB is, by means of a yet-unknown mechanism, an important determinant for cell wall integrity in L. monocytogenes.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Regulação da Expressão Gênica , Listeria monocytogenes/patogenicidade , Muramidase/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Virulência
3.
J Biol Chem ; 295(12): 4024-4034, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32047114

RESUMO

The cell envelope of Gram-positive bacteria generally comprises two types of polyanionic polymers linked to either peptidoglycan (wall teichoic acids; WTA) or to membrane glycolipids (lipoteichoic acids; LTA). In some bacteria, including Bacillus subtilis strain 168, both WTA and LTA are glycerolphosphate polymers yet are synthesized through different pathways and have distinct but incompletely understood morphogenetic functions during cell elongation and division. We show here that the exolytic sn-glycerol-3-phosphodiesterase GlpQ can discriminate between B. subtilis WTA and LTA. GlpQ completely degraded unsubstituted WTA, which lacks substituents at the glycerol residues, by sequentially removing glycerolphosphates from the free end of the polymer up to the peptidoglycan linker. In contrast, GlpQ could not degrade unsubstituted LTA unless it was partially precleaved, allowing access of GlpQ to the other end of the polymer, which, in the intact molecule, is protected by a connection to the lipid anchor. Differences in stereochemistry between WTA and LTA have been suggested previously on the basis of differences in their biosynthetic precursors and chemical degradation products. The differential cleavage of WTA and LTA by GlpQ reported here represents the first direct evidence that they are enantiomeric polymers: WTA is made of sn-glycerol-3-phosphate, and LTA is made of sn-glycerol-1-phosphate. Their distinct stereochemistries reflect the dissimilar physiological and immunogenic properties of WTA and LTA. It also enables differential degradation of the two polymers within the same envelope compartment in vivo, particularly under phosphate-limiting conditions, when B. subtilis specifically degrades WTA and replaces it with phosphate-free teichuronic acids.


Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Ácidos Teicoicos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Glicosilação , Lipopolissacarídeos/biossíntese , Diester Fosfórico Hidrolases/genética , Polímeros/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Compostos de Sódio/química , Estereoisomerismo , Especificidade por Substrato , Ácidos Teicoicos/biossíntese
4.
Mol Microbiol ; 113(3): 638-649, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32185836

RESUMO

Listeria monocytogenes is a Gram-positive, intracellular pathogen harboring the surface-associated virulence factor InlB, which enables entry into certain host cells. Structurally diverse wall teichoic acids (WTAs), which can also be differentially glycosylated, determine the antigenic basis of the various Listeria serovars. WTAs have many physiological functions; they can serve as receptors for bacteriophages, and provide a substrate for binding of surface proteins such as InlB. In contrast, the membrane-anchored lipoteichoic acids (LTAs) do not show significant variation and do not contribute to serovar determination. It was previously demonstrated that surface-associated InlB non-covalently adheres to both WTA and LTA, mediating its retention on the cell wall. Here, we demonstrate that in a highly virulent serovar 4b strain, two genes gtlB and gttB are responsible for galactosylation of LTA and WTA respectively. We evaluated the InlB surface retention in mutants lacking each of these two genes, and found that only galactosylated WTA is required for InlB surface presentation and function, cellular invasiveness and phage adsorption, while galactosylated LTA plays no role thereof. Our findings demonstrate that a simple pathogen-defining serovar antigen, that mediates bacteriophage susceptibility, is necessary and sufficient to sustain the function of an important virulence factor.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Membrana/metabolismo , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/fisiologia , Parede Celular/metabolismo , Glicosilação , Lipopolissacarídeos/metabolismo , Listeria monocytogenes/patogenicidade , Proteínas de Membrana/fisiologia , Sorogrupo , Virulência , Fatores de Virulência/metabolismo
5.
PLoS Pathog ; 15(10): e1008032, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589660

RESUMO

The intracellular pathogen Listeria monocytogenes is distinguished by its ability to invade and replicate within mammalian cells. Remarkably, of the 15 serovars within the genus, strains belonging to serovar 4b cause the majority of listeriosis clinical cases and outbreaks. The Listeria O-antigens are defined by subtle structural differences amongst the peptidoglycan-associated wall-teichoic acids (WTAs), and their specific glycosylation patterns. Here, we outline the genetic determinants required for WTA decoration in serovar 4b L. monocytogenes, and demonstrate the exact nature of the 4b-specific antigen. We show that challenge by bacteriophages selects for surviving clones that feature mutations in genes involved in teichoic acid glycosylation, leading to a loss of galactose from both wall teichoic acid and lipoteichoic acid molecules, and a switch from serovar 4b to 4d. Surprisingly, loss of this galactose decoration not only prevents phage adsorption, but leads to a complete loss of surface-associated Internalin B (InlB),the inability to form actin tails, and a virulence attenuation in vivo. We show that InlB specifically recognizes and attaches to galactosylated teichoic acid polymers, and is secreted upon loss of this modification, leading to a drastically reduced cellular invasiveness. Consequently, these phage-insensitive bacteria are unable to interact with cMet and gC1q-R host cell receptors, which normally trigger cellular uptake upon interaction with InlB. Collectively, we provide detailed mechanistic insight into the dual role of a surface antigen crucial for both phage adsorption and cellular invasiveness, demonstrating a trade-off between phage resistance and virulence in this opportunistic pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/patogenicidade , Parede Celular/metabolismo , Galactose/metabolismo , Listeria monocytogenes/virologia , Proteínas de Membrana/metabolismo , Ácidos Teicoicos/metabolismo , Virulência , Proteínas de Bactérias/genética , Bacteriófagos/genética , Células CACO-2 , Células Hep G2 , Humanos , Listeria monocytogenes/metabolismo , Proteínas de Membrana/genética , Mutação , Sorogrupo
6.
J Biol Chem ; 293(9): 3293-3306, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29343515

RESUMO

The bacterial cell wall is an important and highly complex structure that is essential for bacterial growth because it protects bacteria from cell lysis and environmental insults. A typical Gram-positive bacterial cell wall is composed of peptidoglycan and the secondary cell wall polymers, wall teichoic acid (WTA) and lipoteichoic acid (LTA). In many Gram-positive bacteria, LTA is a polyglycerol-phosphate chain that is decorated with d-alanine and sugar residues. However, the function of and proteins responsible for the glycosylation of LTA are either unknown or not well-characterized. Here, using bioinformatics, genetic, and NMR spectroscopy approaches, we found that the Bacillus subtilis csbB and yfhO genes are essential for LTA glycosylation. Interestingly, the Listeria monocytogenes gene lmo1079, which encodes a YfhO homolog, was not required for LTA glycosylation, but instead was essential for WTA glycosylation. LTA is polymerized on the outside of the cell and hence can only be glycosylated extracellularly. Based on the similarity of the genes coding for YfhO homologs that are required in B. subtilis for LTA glycosylation or in L. monocytogenes for WTA glycosylation, we hypothesize that WTA glycosylation might also occur extracellularly in Listeria species. Finally, we discovered that in L. monocytogenes, lmo0626 (gtlB) was required for LTA glycosylation, indicating that the encoded protein has a function similar to that of YfhO, although the proteins are not homologous. Together, our results enable us to propose an updated model for LTA glycosylation and also indicate that glycosylation of WTA might occur through two different mechanisms in Gram-positive bacteria.


Assuntos
Parede Celular/metabolismo , Lipopolissacarídeos/metabolismo , Ácidos Teicoicos/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Glicosilação , Listeria monocytogenes/citologia , Listeria monocytogenes/metabolismo
7.
Mol Microbiol ; 107(4): 472-487, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29215169

RESUMO

Listeria monocytogenes and other pathogenic bacteria modify their peptidoglycan to protect it against enzymatic attack through the host innate immune system, such as the cell wall hydrolase lysozyme. During our studies on GpsB, a late cell division protein that controls activity of the bi-functional penicillin binding protein PBP A1, we discovered that GpsB influences lysozyme resistance of L. monocytogenes as mutant strains lacking gpsB showed an increased lysozyme resistance. Deletion of pbpA1 corrected this effect, demonstrating that PBP A1 is also involved in this. Susceptibility to lysozyme mainly depends on two peptidoglycan modifying enzymes: The peptidoglycan N-deacetylase PgdA and the peptidoglycan O-acetyltransferase OatA. Genetic and biochemical experiments consistently demonstrated that the increased lysozyme resistance of the ΔgpsB mutant was PgdA-dependent and OatA-independent. Protein-protein interaction studies supported the idea that GpsB, PBP A1 and PgdA form a complex in L. monocytogenes and identified the regions in PBP A1 and PgdA required for complex formation. These results establish a physiological connection between GpsB, PBP A1 and the peptidoglycan modifying enzyme PgdA. To our knowledge, this is the first reported link between a GpsB-like cell division protein and factors important for escape from the host immune system.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Listeria monocytogenes/enzimologia , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Acetiltransferases/metabolismo , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Parede Celular/enzimologia , Farmacorresistência Bacteriana/genética , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Muramidase/farmacologia , Proteínas de Ligação às Penicilinas/genética , Plasmídeos/genética
8.
J Bacteriol ; 199(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795316

RESUMO

The cell division protein GpsB is a regulator of the penicillin binding protein A1 (PBP A1) in the Gram-positive human pathogen Listeria monocytogenes Penicillin binding proteins mediate the last two steps of peptidoglycan biosynthesis as they polymerize and cross-link peptidoglycan strands, the main components of the bacterial cell wall. It is not known what other processes are controlled by GpsB. L. monocytogenes gpsB mutants are unable to grow at 42°C, but we observed that spontaneous suppressors correcting this defect arise on agar plates with high frequency. We here describe a first set of gpsB suppressors that mapped to the clpC and murZ genes. While ClpC is the ATPase component of the Clp protease, MurZ is a paralogue of the listerial UDP-N-acetylglucosamine (UDP-GlcNAc) 1-carboxyvinyltransferase MurA. Both enzymes catalyze the enolpyruvyl transfer from phosphoenolpyruvate to UDP-GlcNAc, representing the first committed step of peptidoglycan biosynthesis. We confirmed that clean deletion of the clpC or murZ gene suppressed the ΔgpsB phenotype. It turned out that the absence of either gene leads to accumulation of MurA, and we show that artificial overexpression of MurA alone was sufficient for suppression. Inactivation of other UDP-GlcNAc-consuming pathways also suppressed the heat-sensitive growth of the ΔgpsB mutant, suggesting that an increased influx of precursor molecules into peptidoglycan biosynthesis can compensate for the lack of GpsB. Our results support a model according to which PBP A1 becomes misregulated and thus toxic in the absence of GpsB due to unproductive consumption of cell wall precursor molecules. IMPORTANCE: The late cell division protein GpsB is important for cell wall biosynthesis in Gram-positive bacteria. GpsB of the human pathogen L. monocytogenes interacts with one of the key enzymes of this pathway, penicillin binding protein A1 (PBP A1), and influences its activity. PBP A1 catalyzes the last two steps of cell wall biosynthesis, but it is unknown how GpsB controls PBP A1. We observed that a L. monocytogenes gpsB mutant forms spontaneous suppressors and have mapped their mutations to genes mediating and influencing the first step of cell wall biosynthesis, likely stimulating the influx of metabolites into this pathway. We assume that GpsB is important to ensure productive incorporation of cell wall precursors into the peptidoglycan sacculus by PBP A1.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Listeria monocytogenes/metabolismo , Peptidoglicano/biossíntese , Bacitracina , Proteínas de Bactérias/genética , Ciclosserina , Fosfomicina , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Listeria monocytogenes/genética , Mutação
9.
J Bacteriol ; 199(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972021

RESUMO

DivIVA is a membrane binding protein that clusters at curved membrane regions, such as the cell poles and the membrane invaginations occurring during cell division. DivIVA proteins recruit many other proteins to these subcellular sites through direct protein-protein interactions. DivIVA-dependent functions are typically associated with cell growth and division, even though species-specific differences in the spectrum of DivIVA functions and their causative interaction partners exist. DivIVA from the Gram-positive human pathogen Listeria monocytogenes has at least three different functions. In this bacterium, DivIVA is required for precise positioning of the septum at midcell, it contributes to the secretion of autolysins required for the breakdown of peptidoglycan at the septum after the completion of cell division, and it is essential for flagellar motility. While the DivIVA interaction partners for control of division site selection are well established, the proteins connecting DivIVA with autolysin secretion or swarming motility are completely unknown. We set out to identify divIVA alleles in which these three DivIVA functions could be separated, since the question of the degree to which the three functions of L. monocytogenes DivIVA are interlinked could not be answered before. Here, we identify such alleles, and our results show that division site selection, autolysin secretion, and swarming represent three discrete pathways that are independently influenced by DivIVA. These findings provide the required basis for the identification of DivIVA interaction partners controlling autolysin secretion and swarming in the future.IMPORTANCE DivIVA of the pathogenic bacterium Listeria monocytogenes is a central scaffold protein that influences at least three different cellular processes, namely, cell division, protein secretion, and bacterial motility. How DivIVA coordinates these rather unrelated processes is not known. We here identify variants of L. monocytogenes DivIVA, in which these functions are separated from each other. These results have important implications for the models explaining how DivIVA interacts with other proteins.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Listeria monocytogenes/genética , Alelos , Divisão Celular , Parede Celular/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Transporte Proteico
10.
Mol Microbiol ; 99(5): 978-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26575090

RESUMO

Each bacterium has to co-ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram-positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi-functional penicillin-binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food-borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Listeria monocytogenes/fisiologia , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Parede Celular/metabolismo , Listeria monocytogenes/citologia , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
J Bacteriol ; 198(3): 416-26, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26527648

RESUMO

UNLABELLED: Cyclic diadenylate monophosphate (c-di-AMP) is a second messenger utilized by diverse bacteria. In many species, including the Gram-positive human pathogen Listeria monocytogenes, c-di-AMP is essential for growth. Here we show that the single diadenylate cyclase of L. monocytogenes, CdaA, is an integral membrane protein that interacts with its potential regulatory protein, CdaR, via the transmembrane protein domain. The presence of the CdaR protein is not required for the membrane localization and abundance of CdaA. We have also found that CdaR negatively influences CdaA activity in L. monocytogenes and that the role of CdaR is most evident at a high growth temperature. Interestingly, a cdaR mutant strain is less susceptible to lysozyme. Moreover, CdaA contributes to cell division, and cells depleted of CdaA are prone to lysis. The observation that the growth defect of a CdaA depletion strain can be partially restored by increasing the osmolarity of the growth medium suggests that c-di-AMP is important for maintaining the integrity of the protective cell envelope. Overall, this work provides new insights into the relationship between CdaA and CdaR. IMPORTANCE: Cyclic diadenylate monophosphate (c-di-AMP) is a recently identified second messenger that is utilized by the Gram-positive human pathogen Listeria monocytogenes. Here we show that the single diadenylate cyclase of L. monocytogenes, CdaA, is an integral membrane protein that interacts with CdaR, its potential regulatory protein. We show that CdaR is not required for membrane localization or abundance of the diadenylate cyclase, but modulates its activity. Moreover, CdaA seems to contribute to cell division. Overall, this work provides new insights into the relationship between CdaA and CdaR and their involvement in cell growth.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Listeria monocytogenes/enzimologia , Listeria monocytogenes/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/fisiologia , Deleção de Genes , Homeostase , Listeria monocytogenes/genética , Pressão Osmótica , Fósforo-Oxigênio Liases/genética , Transporte Proteico
13.
Mol Microbiol ; 95(2): 332-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25424554

RESUMO

Upon ingestion of contaminated food, Listeria monocytogenes can cause serious infections in humans that are normally treated with ß-lactam antibiotics. These target Listeria's five high molecular weight penicillin-binding proteins (HMW PBPs), which are required for peptidoglycan biosynthesis. The two bi-functional class A HMW PBPs PBP A1 and PBP A2 have transglycosylase and transpeptidase domains catalyzing glycan chain polymerization and peptide cross-linking, respectively, whereas the three class B HMW PBPs B1, B2 and B3 are monofunctional transpeptidases. The precise roles of these PBPs in the cell cycle are unknown. Here we show that green fluorescent protein (GFP)-PBP fusions localized either at the septum, the lateral wall or both, suggesting distinct and overlapping functions. Genetic data confirmed this view: PBP A1 and PBP A2 could not be inactivated simultaneously, and a conditional double mutant strain is largely inducer dependent. PBP B1 is required for rod-shape and PBP B2 for cross-wall biosynthesis and viability, whereas PBP B3 is dispensable for growth and cell division. PBP B1 depletion dramatically increased ß-lactam susceptibilities and stimulated spontaneous autolysis but had no effect on peptidoglycan cross-linkage. Our in vitro virulence assays indicated that the complete set of all HMW PBPs is required for maximal virulence.


Assuntos
Listeria monocytogenes/fisiologia , Listeria monocytogenes/patogenicidade , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Células 3T3 , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/fisiologia , Células HeLa , Humanos , Listeria monocytogenes/citologia , Listeria monocytogenes/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Peptidoglicano/metabolismo , Virulência/genética , beta-Lactamas/farmacologia
14.
Mol Microbiol ; 94(3): 637-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25185533

RESUMO

The cell division protein DivIVA influences protein transport via the accessory SecA2 secretion route in Listeria monocytogenes. In contrast, DivIVA from the closely related bacterium Bacillus subtilis contributes to division site selection via the MinCDJ system. However, no classical min phenotype, i.e. filamentation and minicell production was observed with a listerial ΔdivIVA mutant. This has prompted the speculation that division site selection is DivIVA-independent in L. monocytogenes. We addressed this question with genetic, cytological and bacterial two-hybrid experiments and the data obtained correct this view. DivIVA not only binds to MinJ but also directly interacts with MinD. Experiments with fluorescently tagged proteins showed that localization of MinC and MinD was clearly DivIVA-dependent, whereas localization of MinJ was not. An impact of DivIVA on cell division was confirmed by careful comparisons of cell size distributions of divIVA and secA2 mutants. Gene deletion studies and epistasis experiments consistently reinforced these findings, and also revealed that MinJ must have a DivIVA-independent function. The frequency of minicell formation is low in L. monocytogenes min mutants. However, since listerial minicells might be useful as carriers for the introduction of therapeutic compounds into eukaryotic cells, we present a strategy how minicell frequency can be increased.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Listeria monocytogenes/fisiologia , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Epistasia Genética , Deleção de Genes , Listeria monocytogenes/citologia , Listeria monocytogenes/genética , Microscopia , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
15.
Methods Mol Biol ; 2727: 107-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37815712

RESUMO

Type I lipoteichoic acid (LTA) is a glycerol phosphate polymer found in the cell envelope of diverse Gram-positive bacteria. The glycerol phosphate backbone is often further decorated with D-alanine and/or sugar residues. Here, we provide details of a 1-butanol extraction and purification method of type I LTA by hydrophobic interaction chromatography. The protocol has been adapted from methods originally described by Fischer et al. (Eur J Biochem 133:523-530, 1983) and further optimized by Morath et al. (J Exp Med 193:393-397, 2001). We also present information on a 2D nuclear magnetic resonance (NMR) analysis method to gain chemical and structural information of the purified LTA material.


Assuntos
Glicerol , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Ácidos Teicoicos/química , Cromatografia , Espectroscopia de Ressonância Magnética , Interações Hidrofóbicas e Hidrofílicas , Fosfatos
16.
Microbiol Spectr ; : e0029123, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916932

RESUMO

Two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR) are often associated with transenvelope efflux systems, which export transition metal cations from the periplasm directly out of the cell. Although much work has been done in this field, more evidence is needed for the hypothesis that the respective two-component regulatory systems are indeed sensing periplasmic ions. If so, a regulatory circuit between the concentration of periplasmic metal cations, sensing of these metals, and control of expression of the genes for transenvelope efflux systems that remove periplasmic cations can be assumed. Escherichia coli possesses only one transenvelope efflux system for metal cations, the Cus system for export of Cu(I) and Ag(I). It is composed of the transenvelope efflux system CusCBA, the periplasmic copper chaperone CusF, and the two-component regulatory system CusS (HK) and CusR (RR). Using phoA- and lacZ-reporter gene fusions, it was verified that an assumed periplasmic part of CusS is located in the periplasm. CusS was more important for copper resistance in E. coli under anaerobic conditions than under aerobic conditions and in complex medium more than in mineral salts medium. Predicted copper-binding sites in the periplasmic part of CusS were identified that, individually, were not essential for copper resistance but were in combination. In summary, evidence was obtained that the two-component regulatory system CusSR that controls expression of cusF and cusCBA does indeed sense periplasmic copper ions. IMPORTANCE Homeostasis of essential-but-toxic transition metal cations such as Zn(II) and Cu(II)/Cu(I) is an important contributor to the fitness of environmental bacteria and pathogenic bacteria during their confrontation with an infected host. Highly efficient removal of threatening concentrations of these metals can be achieved by the combined actions of an inner membrane with a transenvelope efflux system, which removes periplasmic ions after their export from the cytoplasm to this compartment. To understand the resulting metal cation homeostasis in the periplasm, it is important to know if a regulatory circuit exists between periplasmic metal cations, their sensing, and the subsequent control of the expression of the transenvelope efflux system. This publication adds evidence to the hypothesis that two-component regulatory systems in control of the expression of genes for transenvelope efflux systems do indeed sense metal cations in the periplasm.

17.
Environ Microbiol Rep ; 15(6): 669-683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864319

RESUMO

The foodborne pathogen Listeria monocytogenes can grow in a wide range of environmental conditions. For the study of the physiology of this organism, several chemically defined media have been developed over the past decades. Here, we examined the ability of L. monocytogenes wildtype strains EGD-e and 10403S to grow under salt and pH stress in Listeria synthetic medium (LSM). Furthermore, we determined that a wide range of carbon sources could support the growth of both wildtype strains in LSM. However, for hexose phosphate sugars such as glucose-1-phosphate, both L. monocytogenes strains need to be pre-grown under conditions, where the major virulence regulator PrfA is active. In addition, growth of both L. monocytogenes strains was observed when LSM was supplemented with the amino acid sugar N-acetylmannosamine (ManNAc). We were able to show that some of the proteins encoded in the operon lmo2795-nanE, such as the ManNAc-6-phosphate epimerase NanE, are required for growth in the presence of ManNAc. The first gene of the operon, lmo2795, encodes a transcriptional regulator of the RpiR family. Using electrophoretic mobility shift assays and quantitative real-time PCR analysis, we were able to show that Lmo2795 binds to the promoter region of the operon lmo2795-nanE and activates its expression.


Assuntos
Listeria monocytogenes , Listeria , Listeria monocytogenes/genética , Listeria/genética , Listeria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Óperon , Regulação Bacteriana da Expressão Gênica
18.
Microbiol Spectr ; : e0144123, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695041

RESUMO

Listeria monocytogenes is ubiquitously found in nature and can easily enter food-processing facilities due to contaminations of raw materials. Several countermeasures are used to combat contamination of food products, for instance, the use of disinfectants that contain quaternary ammonium compounds, such as benzalkonium chloride (BAC) and cetyltrimethylammonium bromide (CTAB). In this study, we assessed the potential of the commonly used wild-type strain EGD-e to adapt to BAC and CTAB under laboratory growth conditions. All BAC-tolerant suppressors exclusively carried mutations in fepR, encoding a TetR-like transcriptional regulator, or its promoter region, likely resulting in the overproduction of the efflux pump FepA. In contrast, CTAB tolerance was associated with mutations in sugR, which regulates the expression of the efflux pumps SugE1 and SugE2. L. monocytogenes strains lacking either FepA or SugE1/2 could still acquire tolerance toward BAC and CTAB. Genomic analysis revealed that the overproduction of the remaining efflux system could compensate for the deleted one, and even in the absence of both efflux systems, tolerant strains could be isolated, which all carried mutations in the diacylglycerol kinase-encoding gene lmo1753 (dgkB). DgkB converts diacylglycerol to phosphatidic acid, which is subsequently reused for the synthesis of phospholipids, suggesting that alterations in membrane composition could be the third adaptation mechanism. IMPORTANCE Survival and proliferation of Listeria monocytogenes in the food industry are ongoing concerns, and while there are various countermeasures to combat contamination of food products, the pathogen still successfully manages to withstand the harsh conditions present in food-processing facilities, resulting in reoccurring outbreaks, subsequent infection, and disease. To counteract the spread of L. monocytogenes, it is crucial to understand and elucidate the underlying mechanism that permits their successful evasion. We present various adaptation mechanisms of L. monocytogenes to withstand two important quaternary ammonium compounds.

19.
Cell Surf ; 8: 100085, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36304571

RESUMO

The bacterial cell wall is composed of a thick layer of peptidoglycan and cell wall polymers, which are either embedded in the membrane or linked to the peptidoglycan backbone and referred to as lipoteichoic acid (LTA) and wall teichoic acid (WTA), respectively. Modifications of the peptidoglycan or WTA backbone can alter the susceptibility of the bacterial cell towards cationic antimicrobials and lysozyme. The human pathogen Listeria monocytogenes is intrinsically resistant towards lysozyme, mainly due to deacetylation and O-acetylation of the peptidoglycan backbone via PgdA and OatA. Recent studies identified additional factors, which contribute to the lysozyme resistance of this pathogen. One of these is the predicted ABC transporter, EslABC. An eslB mutant is hyper-sensitive towards lysozyme, likely due to the production of thinner and less O-acetylated peptidoglycan. Using a suppressor screen, we show here that suppression of eslB phenotypes could be achieved by enhancing peptidoglycan biosynthesis, reducing peptidoglycan hydrolysis or alterations in WTA biosynthesis and modification. The lack of EslB also leads to a higher negative surface charge, which likely stimulates the activity of peptidoglycan hydrolases and lysozyme. Based on our results, we hypothesize that the portion of cell surface exposed WTA is increased in the eslB mutant due to the thinner peptidoglycan layer and that latter one could be caused by an impairment in UDP-N-acetylglucosamine (UDP-GlcNAc) production or distribution.

20.
Microorganisms ; 9(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450852

RESUMO

ATP-binding cassette (ABC) transporters are usually involved in the translocation of their cognate substrates, which is driven by ATP hydrolysis. Typically, these transporters are required for the import or export of a wide range of substrates such as sugars, ions and complex organic molecules. ABC exporters can also be involved in the export of toxic compounds such as antibiotics. However, recent studies revealed alternative detoxification mechanisms of ABC transporters. For instance, the ABC transporter BceAB of Bacillus subtilis seems to confer resistance to bacitracin via target protection. In addition, several transporters with functions other than substrate export or import have been identified in the past. Here, we provide an overview of recent findings on ABC transporters of the Gram-positive organisms B. subtilis and Listeria monocytogenes with transport or regulatory functions affecting antibiotic resistance, cell wall biosynthesis, cell division and sporulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA