Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(6): 910-941, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32505227

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Animais , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Memória Imunológica , Inflamação/imunologia , Inflamação/virologia , Linfócitos/imunologia , Células Mieloides/imunologia , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/patologia , Pneumonia Viral/terapia , SARS-CoV-2
2.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591983

RESUMO

The medullary niche is a complex ecosystem that is essential to maintain homeostasis for resident cells. Indeed, the bone marrow, which includes a complex extracellular matrix and various cell types, such as mesenchymal stem cells, osteoblasts, and endothelial cells, is deeply involved in hematopoietic stem cell regulation through direct cell-cell interactions, as well as cytokine production. To closely mimic this in vivo structure and conduct experiments reflecting the responses of the human bone marrow, several 3D models have been created based on biomaterials, relying primarily on primary stromal cells. Here, a protocol is described to obtain a minimal and standardized system that is easy to set up and provides features of bone marrow-like structure, which combines different cell populations including endothelial cells, and reflects the heterogeneity of in vivo bone marrow tissue. This 3D bone marrow-like structure-assembled using calcium phosphate-based particles and human cell lines, representative of the bone marrow microenvironment-allows the monitoring of a wide variety of biological processes by combining or replacing different primary cell populations within the system. The final 3D structures can then either be harvested for image analysis after fixation, paraffin-embedding, and histological/immunohistochemical staining for cell localization within the system, or dissociated to collect each cellular component for molecular or functional characterization.


Assuntos
Medula Óssea , Neoplasias , Humanos , Medula Óssea/fisiologia , Células Endoteliais , Ecossistema , Células-Tronco Hematopoéticas , Células Estromais , Células da Medula Óssea , Neoplasias/metabolismo , Nicho de Células-Tronco/fisiologia , Microambiente Tumoral
3.
Nat Cancer ; 3(10): 1165-1180, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050483

RESUMO

Increasing evidence shows that cancer cells can disseminate from early evolved primary lesions much earlier than the classical metastasis models predicted. Here, we reveal at a single-cell resolution that mesenchymal-like (M-like) and pluripotency-like programs coordinate dissemination and a long-lived dormancy program of early disseminated cancer cells (DCCs). The transcription factor ZFP281 induces a permissive state for heterogeneous M-like transcriptional programs, which associate with a dormancy signature and phenotype in vivo. Downregulation of ZFP281 leads to a loss of an invasive, M-like dormancy phenotype and a switch to lung metastatic outgrowth. We also show that FGF2 and TWIST1 induce ZFP281 expression to induce the M-like state, which is linked to CDH1 downregulation and upregulation of CDH11. We found that ZFP281 not only controls the early dissemination of cancer cells but also locks early DCCs in a dormant state by preventing the acquisition of an epithelial-like proliferative program and consequent metastases outgrowth.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias , Humanos , Fatores de Transcrição/genética , Pulmão
4.
Nat Cancer ; 2(3): 327-339, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34993493

RESUMO

In the bone marrow (BM) microenvironment, where breast cancer (BC) disseminated tumour cells (DTCs) can remain dormant for decades, NG2+/Nestin+ mesenchymal stem cells (MSCs) promote hematopoietic stem cell quiescence. Here, we reveal that periarteriolar BM-resident NG2+/Nestin+ MSCs can also instruct BC DTCs to enter dormancy. NG2+/Nestin+ MSCs produce TGFß2 and BMP7 and activate a quiescence pathway dependent on TGFBRIII and BMPRII, which via p38-kinase result in p27 induction. Genetic depletion of MSCs or conditional knock-out of TGFß2 in MSCs using an NG2-CreER driver led to bone metastatic outgrowth of otherwise dormant p27+/Ki67- DTCs. Also ER+ BC patients without systemic recurrence displayed higher frequency of TGFß2 and BMP7 detection in the BM. Our results provide a direct proof that HSC dormancy niches control BC DTC dormancy and suggest that aging or extrinsic factors that affect the NG2+/Nestin+ MSC niche homeostasis may result in a break from dormancy and BC bone relapse.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Medula Óssea/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Recidiva Local de Neoplasia/metabolismo , Nestina/metabolismo , Microambiente Tumoral
5.
Nat Cancer ; 1(7): 672-680, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33681821

RESUMO

Disseminated tumor cells (DTCs) are known to enter a state of dormancy that is achieved via growth arrest of DTCs and/or a form of population equilibrium state, strongly influenced by the organ microenvironment. During this time, expansion of residual disseminated cancer is paused and DTCs survive to fuel relapse, sometimes decades later. This notion has opened a new window of opportunity for intervening and preventing relapse. Here we review recent data that have further augmented the understanding of cancer dormancy and discuss how this is leading to new strategies for monitoring and targeting dormant cancer.


Assuntos
Recidiva Local de Neoplasia , Microambiente Tumoral , Progressão da Doença , Humanos , Neoplasia Residual/patologia
6.
Nat Rev Immunol ; 20(6): 353, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32355330
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA