Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cereb Cortex ; 33(10): 6241-6256, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36611231

RESUMO

Structural connectivity of the brain at different ages is analyzed using diffusion-weighted magnetic resonance imaging (MRI) data. The largest decrease of streamlines is found in frontal regions and for long inter-hemispheric links. The average length of the tracts also decreases, but the clustering is unaffected. From functional MRI we identify age-related changes of dynamic functional connectivity (dFC) and spatial covariation features of functional connectivity (FC) links captured by metaconnectivity. They indicate more stable dFC, but wider range and variance of MC, whereas static features of FC did not show any significant differences with age. We implement individual connectivity in whole-brain models and test several hypotheses for the mechanisms of operation among underlying neural system. We demonstrate that age-related functional fingerprints are only supported if the model accounts for: (i) compensation of the individual brains for the overall loss of structural connectivity and (ii) decrease of propagation velocity due to the loss of myelination. We also show that with these 2 conditions, it is sufficient to decompose the time-delays as bimodal distribution that only distinguishes between intra- and inter-hemispheric delays, and that the same working point also captures the static FC the best, and produces the largest variability at slow time-scales.


Assuntos
Conectoma , Humanos , Conectoma/métodos , Rede Nervosa , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Mapeamento Encefálico/métodos
2.
Neuroimage ; 250: 118928, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101596

RESUMO

What dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled neural populations in brain network models (BNMs). From detailed spiking networks to more abstract population models, there is strong support for the idea that the brain operates near critical instabilities that give rise to multistable or metastable dynamics that in turn lead to the intermittently synchronized slow oscillations underlying FC(D). We explore further consequences from these fundamental mechanisms and how they fit with reality. We conclude by highlighting the need for integrative brain models that connect separate mechanisms across levels of description and spatiotemporal scales and link them with cognitive function.


Assuntos
Cognição/fisiologia , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Neuroimagem , Humanos
3.
Neuroimage ; 251: 118973, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131433

RESUMO

The Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material. TVB cloud services facilitate reproducible online collaboration and discovery of data assets, models, and software embedded in scalable and secure workflows, a precondition for research on large cohort data sets, better generalizability, and clinical translation.


Assuntos
Encéfalo , Computação em Nuvem , Animais , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Software
4.
Hum Brain Mapp ; 43(7): 2348-2364, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35133058

RESUMO

Sensorimotor coordination requires orchestrated network activity in the brain, mediated by inter- and intra-hemispheric interactions that may be affected by aging-related changes. We adopted a theoretical model, according to which intra-hemispheric inhibition from premotor to primary motor cortex is mandatory to compensate for inter-hemispheric excitation through the corpus callosum. To test this as a function of age we acquired electroencephalography (EEG) simultaneously with functional magnetic resonance imaging (fMRI) in two groups of healthy adults (younger N = 13: 20-25 year and older N = 14: 59-70 year) while learning a unimanual motor task. On average, quality of performance of older participants stayed significantly below that of the younger ones. Accompanying decreases in motor-event-related EEG ß-activity were lateralized toward contralateral motor regions, albeit more so in younger participants. In this younger group, the mean ß-power during motor task execution was significantly higher in bilateral premotor areas compared to the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals were positively correlated with source-reconstructed ß-amplitudes: positive in primary motor and negative in premotor cortex. This suggests that ß-amplitude modulation is associated with primary motor cortex "activation" (positive BOLD response) and premotor "deactivation" (negative BOLD response). Although the latter results did not discriminate between age groups, they underscore that enhanced modulation in primary motor cortex may be explained by a ß-associated excitatory crosstalk between hemispheres.


Assuntos
Imageamento por Ressonância Magnética , Córtex Motor , Idoso , Envelhecimento/fisiologia , Estudos de Coortes , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia
5.
Cereb Cortex ; 31(4): 2013-2025, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33279967

RESUMO

Neuregulin-1 (NRG1) represents an important factor for multiple processes including neurodevelopment, brain functioning or cognitive functions. Evidence from animal research suggests an effect of NRG1 on the excitation-inhibition (E/I) balance in cortical circuits. However, direct evidence for the importance of NRG1 in E/I balance in humans is still lacking. In this work, we demonstrate the application of computational, biophysical network models to advance our understanding of the interaction between cortical activity observed in neuroimaging and the underlying neurobiology. We employed a biophysical neuronal model to simulate large-scale brain dynamics and to investigate the role of polymorphisms in the NRG1 gene (rs35753505, rs3924999) in n = 96 healthy adults. Our results show that G/G-carriers (rs3924999) exhibit a significant difference in global coupling (P = 0.048) and multiple parameters determining E/I-balance such as excitatory synaptic coupling (P = 0.047), local excitatory recurrence (P = 0.032) and inhibitory synaptic coupling (P = 0.028). This indicates that NRG1 may be related to excitatory recurrence or excitatory synaptic coupling potentially resulting in altered E/I-balance. Moreover, we suggest that computational modeling is a suitable tool to investigate specific biological mechanisms in health and disease.


Assuntos
Encéfalo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genótipo , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neuregulina-1/genética , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Neuregulina-1/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Sinapses/genética , Sinapses/metabolismo , Adulto Jovem
6.
Alzheimers Dement ; 17(9): 1528-1553, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860614

RESUMO

The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.


Assuntos
Doença de Alzheimer/fisiopatologia , Ensaios Clínicos como Assunto , Eletroencefalografia/normas , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Humanos
7.
J Cogn Neurosci ; 32(4): 734-745, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820677

RESUMO

Understanding how the human brain integrates information from the environment with intrinsic brain signals to produce individual perspectives is an essential element of understanding the human mind. Brain signal complexity, measured with multiscale entropy, has been employed as a measure of information processing in the brain, and we propose that it can also be used to measure the information available from a stimulus. We can directly assess the correspondence between brain signal complexity and stimulus complexity as an indication of how well the brain reflects the content of the environment in an analysis that we term "complexity matching." Music is an ideal stimulus because it is a multidimensional signal with a rich temporal evolution and because of its emotion- and reward-inducing potential. When participants focused on acoustic features of music, we found that EEG complexity was lower and more closely resembled the musical complexity compared to an emotional task that asked them to monitor how the music made them feel. Music-derived reward scores on the Barcelona Music Reward Questionnaire correlated with less complexity matching but higher EEG complexity. Compared with perceptual-level processing, emotional and reward responses are associated with additional internal information processes above and beyond those linked to the external stimulus. In other words, the brain adds something when judging the emotional valence of music.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Emoções/fisiologia , Música , Recompensa , Estimulação Acústica , Adulto , Interpretação Estatística de Dados , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
8.
Neuroimage ; 213: 116738, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32194282

RESUMO

Brain tumor patients scheduled for tumor resection often face significant uncertainty, as the outcome of neurosurgery is difficult to predict at the individual patient level. Recently, simulation of the activity of neural populations connected according to the white matter fibers, producing personalized brain network models, has been introduced as a promising tool for this purpose. The Virtual Brain provides a robust open source framework to implement these models. However, brain network models first have to be validated, before they can be used to predict brain dynamics. In prior work, we optimized individual brain network model parameters to maximize the fit with empirical brain activity. In this study, we extend this line of research by examining the stability of fitted parameters before and after tumor resection, and compare it with baseline parameter variability using data from healthy control subjects. Based on these findings, we perform the first "virtual neurosurgery", mimicking patient's actual surgery by removing white matter fibers in the resection mask and simulating again neural activity on this new connectome. We find that brain network model parameters are relatively stable over time in brain tumor patients who underwent tumor resection, compared with baseline variability in healthy control subjects. Concerning the virtual neurosurgery analyses, use of the pre-surgery model implemented on the virtually resected structural connectome resulted in improved similarity with post-surgical empirical functional connectivity in some patients, but negligible improvement in others. These findings reveal interesting avenues for increasing interactions between computational neuroscience and neuro-oncology, as well as important limitations that warrant further investigation.


Assuntos
Neoplasias Encefálicas/cirurgia , Simulação por Computador , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Adulto , Idoso , Encéfalo/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/métodos , Interface Usuário-Computador
9.
Neuroimage ; 222: 117156, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32698027

RESUMO

Functional Connectivity (FC) during resting-state or task conditions is not static but inherently dynamic. Yet, there is no consensus on whether fluctuations in FC may resemble isolated transitions between discrete FC states rather than continuous changes. This quarrel hampers advancing the study of dynamic FC. This is unfortunate as the structure of fluctuations in FC can certainly provide more information about developmental changes, aging, and progression of pathologies. We merge the two perspectives and consider dynamic FC as an ongoing network reconfiguration, including a stochastic exploration of the space of possible steady FC states. The statistical properties of this random walk deviate both from a purely "order-driven" dynamics, in which the mean FC is preserved, and from a purely "randomness-driven" scenario, in which fluctuations of FC remain uncorrelated over time. Instead, dynamic FC has a complex structure endowed with long-range sequential correlations that give rise to transient slowing and acceleration epochs in the continuous flow of reconfiguration. Our analysis for fMRI data in healthy elderly revealed that dynamic FC tends to slow down and becomes less complex as well as more random with increasing age. These effects appear to be strongly associated with age-related changes in behavioural and cognitive performance.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Conectoma , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
10.
Neuroimage ; 171: 40-54, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294385

RESUMO

Spontaneous activity measured in human subject under the absence of any task exhibits complex patterns of correlation that largely correspond to large-scale functional topographies obtained with a wide variety of cognitive and perceptual tasks. These "resting state networks" (RSNs) fluctuate over time, forming and dissolving on the scale of seconds to minutes. While these fluctuations, most prominently those of the default mode network, have been linked to cognitive function, it remains unclear whether they result from random noise or whether they index a nonstationary process which could be described as state switching. In this study, we use a sliding windows-approach to relate temporal dynamics of RSNs to global modulations in correlation and BOLD variance. We compare empirical data, phase-randomized surrogate data, and data simulated with a stationary model. We find that RSN time courses exhibit a large amount of coactivation in all three cases, and that the modulations in their activity are closely linked to global dynamics of the underlying BOLD signal. We find that many properties of the observed fluctuations in FC and BOLD, including their ranges and their correlations amongst each other, are explained by fluctuations around the average FC structure. However, we also report some interesting characteristics that clearly support nonstationary features in the data. In particular, we find that the brain spends more time in the troughs of modulations than can be expected from stationary dynamics.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/fisiologia , Descanso/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
PLoS Comput Biol ; 13(3): e1005410, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248957

RESUMO

Data-driven models of functional magnetic resonance imaging (fMRI) activity can elucidate dependencies that involve the combination of multiple brain regions. Activity in some regions during resting-state fMRI can be predicted with high accuracy from the activities of other regions. However, it remains unclear in which regions activity depends on unique integration of multiple predictor regions. To address this question, sparse (parsimonious) models could serve to better determine key interregional dependencies by reducing false positives. We used resting-state fMRI data from 46 subjects, and for each region of interest (ROI) per subject we performed whole-brain recursive feature elimination (RFE) to select the minimal set of ROIs that best predicted activity in the modeled ROI. We quantified the dependence of activity on multiple predictor ROIs, by measuring the gain in prediction accuracy of models that incorporated multiple predictor ROIs compared to models that used a single predictor ROI. We identified regions that showed considerable evidence of multiregional integration and determined the key regions that contributed to their observed activity. Our models reveal fronto-parietal integration networks, little integration in primary sensory regions, as well as redundancy between some regions. Our study demonstrates the utility of whole-brain RFE to generate data-driven models with minimal sets of ROIs that predict activity with high accuracy. By determining the extent to which activity in each ROI depended on integration of signals from multiple ROIs, we find cortical integration networks during resting-state activity.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Descanso/fisiologia , Comorbidade , Modelos Estatísticos
12.
Neuroimage ; 159: 388-402, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782678

RESUMO

It is well-established that patterns of functional connectivity (FC) - measures of correlated activity between pairs of voxels or regions observed in the human brain using neuroimaging - are robustly expressed in spontaneous activity during rest. These patterns are not static, but exhibit complex spatio-temporal dynamics. Over the last years, a multitude of methods have been proposed to reveal these dynamics on the level of the whole brain. One finding is that the brain transitions through different FC configurations over time, and substantial effort has been put into characterizing these configurations. However, the dynamics governing these transitions are more elusive, specifically, the contribution of stationary vs. non-stationary dynamics is an active field of inquiry. In this study, we use a whole-brain approach, considering FC dynamics between 66 ROIs covering the entire cortex. We combine an innovative dimensionality reduction technique, tensor decomposition, with a mean field model which possesses stationary dynamics. It has been shown to explain resting state FC averaged over time and multiple subjects, however, this average FC summarizes the spatial distribution of correlations while hiding their temporal dynamics. First, we apply tensor decomposition to resting state scans from 24 healthy controls in order to characterize spatio-temporal dynamics present in the data. We simultaneously utilize temporal and spatial information by creating tensors that are subsequently decomposed into sets of brain regions ("communities") that share similar temporal dynamics, and their associated time courses. The tensors contain pairwise FC computed inside of overlapping sliding windows. Communities are discovered by clustering features pooled from all subjects, thereby ensuring that they generalize. We find that, on the group level, the data give rise to four distinct communities that resemble known resting state networks (RSNs): default mode network, visual network, control networks, and somatomotor network. Second, we simulate data with our stationary mean field model whose nodes are connected according to results from DTI and fiber tracking. In this model, all spatio-temporal structure is due to noisy fluctuations around the average FC. We analyze the simulated data in the same way as the empirical data in order to determine whether stationary dynamics can explain the emergence of distinct FC patterns (RSNs) which have their own time courses. We find that this is the case for all four networks using the spatio-temporal information revealed by tensor decomposition if nodes in the simulation are connected according to model-based effective connectivity. Furthermore, we find that these results require only a small part of the FC values, namely the highest values that occur across time and ROI pair. Our findings show that stationary dynamics can account for the emergence of RSNs. We provide an innovative method that does not make strong assumptions about the underlying data and is generally applicable to resting state or task data from different subject populations.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imagem de Tensor de Difusão/métodos , Modelos Neurológicos , Vias Neurais/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Descanso , Adulto Jovem
13.
Hum Brain Mapp ; 38(4): 2080-2093, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054725

RESUMO

Modern systems neuroscience increasingly leans on large-scale multi-lab neuroinformatics initiatives to provide necessary capacity for biologically realistic modeling of primate whole-brain activity. Here, we present a framework to assemble primate brain's biologically plausible anatomical backbone for such modeling initiatives. In this framework, structural connectivity is determined by adding complementary information from invasive macaque axonal tract tracing and non-invasive human diffusion tensor imaging. Both modalities are combined by means of available interspecies registration tools and a newly developed Bayesian probabilistic modeling approach to extract common connectivity evidence. We demonstrate how this novel framework is embedded in the whole-brain simulation platform called The Virtual Brain (TVB). Hum Brain Mapp 38:2080-2093, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Bibliotecas Digitais , Modelos Neurológicos , Vias Neurais/anatomia & histologia , Adolescente , Adulto , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Conectoma , Bases de Dados Factuais , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Macaca , Masculino , Modelos Estatísticos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Especificidade da Espécie , Adulto Jovem
14.
PLoS Comput Biol ; 12(3): e1004762, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26982185

RESUMO

The brain exhibits complex spatio-temporal patterns of activity. This phenomenon is governed by an interplay between the internal neural dynamics of cortical areas and their connectivity. Uncovering this complex relationship has raised much interest, both for theory and the interpretation of experimental data (e.g., fMRI recordings) using dynamical models. Here we focus on the so-called inverse problem: the inference of network parameters in a cortical model to reproduce empirically observed activity. Although it has received a lot of interest, recovering directed connectivity for large networks has been rather unsuccessful so far. The present study specifically addresses this point for a noise-diffusion network model. We develop a Lyapunov optimization that iteratively tunes the network connectivity in order to reproduce second-order moments of the node activity, or functional connectivity. We show theoretically and numerically that the use of covariances with both zero and non-zero time shifts is the key to infer directed connectivity. The first main theoretical finding is that an accurate estimation of the underlying network connectivity requires that the time shift for covariances is matched with the time constant of the dynamical system. In addition to the network connectivity, we also adjust the intrinsic noise received by each network node. The framework is applied to experimental fMRI data recorded for subjects at rest. Diffusion-weighted MRI data provide an estimate of anatomical connections, which is incorporated to constrain the cortical model. The empirical covariance structure is reproduced faithfully, especially its temporal component (i.e., time-shifted covariances) in addition to the spatial component that is usually the focus of studies. We find that the cortical interactions, referred to as effective connectivity, in the tuned model are not reciprocal. In particular, hubs are either receptors or feeders: they do not exhibit both strong incoming and outgoing connections. Our results sets a quantitative ground to explore the propagation of activity in the cortex.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Simulação por Computador , Humanos , Modelos Estatísticos , Análise Espaço-Temporal
15.
Neuroimage ; 142: 135-149, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27480624

RESUMO

Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models. It is still unclear on the one hand, which scale of representation of white matter fibers is optimal to describe brain activity on a large-scale such as recorded with magneto- or electroencephalography (M/EEG) or functional magnetic resonance imaging (fMRI), and on the other hand, to which extent short-range connections that are typically local should be taken into account. In this article we quantified the effect of connectivity upon large-scale brain network dynamics by (i) systematically varying the number of brain regions before computing the connectivity matrix, and by (ii) adding generic short-range connections. We used dMRI data from the Human Connectome Project. We developed a suite of preprocessing modules called SCRIPTS to prepare these imaging data for The Virtual Brain, a neuroinformatics platform for large-scale brain modeling and simulations. We performed simulations under different connectivity conditions and quantified the spatiotemporal dynamics in terms of Shannon Entropy, dwell time and Principal Component Analysis. For the reconstructed connectivity, our results show that the major white matter fiber bundles play an important role in shaping slow dynamics in large-scale brain networks (e.g. in fMRI). Faster dynamics such as gamma oscillations (around 40 Hz) are sensitive to the short-range connectivity if transmission delays are considered.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Rede Nervosa/fisiologia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Humanos
16.
Hum Brain Mapp ; 37(7): 2645-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27041212

RESUMO

Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Oxigênio/sangue , Análise de Regressão , Descanso , Adulto Jovem
17.
Hum Brain Mapp ; 37(8): 2918-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27120982

RESUMO

Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Vias Neurais/fisiopatologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia
18.
PLoS Comput Biol ; 11(9): e1004352, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26335064

RESUMO

Oscillations are ubiquitous phenomena in the animal and human brain. Among them, the alpha rhythm in human EEG is one of the most prominent examples. However, its precise mechanisms of generation are still poorly understood. It was mainly this lack of knowledge that motivated a number of simultaneous electroencephalography (EEG) - functional magnetic resonance imaging (fMRI) studies. This approach revealed how oscillatory neuronal signatures such as the alpha rhythm are paralleled by changes of the blood oxygenation level dependent (BOLD) signal. Several such studies revealed a negative correlation between the alpha rhythm and the hemodynamic BOLD signal in visual cortex and a positive correlation in the thalamus. In this study we explore the potential generative mechanisms that lead to those observations. We use a bursting capable Stefanescu-Jirsa 3D (SJ3D) neural-mass model that reproduces a wide repertoire of prominent features of local neuronal-population dynamics. We construct a thalamo-cortical network of coupled SJ3D nodes considering excitatory and inhibitory directed connections. The model suggests that an inverse correlation between cortical multi-unit activity, i.e. the firing of neuronal populations, and narrow band local field potential oscillations in the alpha band underlies the empirically observed negative correlation between alpha-rhythm power and fMRI signal in visual cortex. Furthermore the model suggests that the interplay between tonic and bursting mode in thalamus and cortex is critical for this relation. This demonstrates how biophysically meaningful modelling can generate precise and testable hypotheses about the underpinnings of large-scale neuroimaging signals.


Assuntos
Ritmo alfa/fisiologia , Modelos Neurológicos , Tálamo/irrigação sanguínea , Tálamo/fisiologia , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia , Biologia Computacional , Eletroencefalografia , Hemodinâmica/fisiologia , Humanos , Imageamento por Ressonância Magnética
19.
Neuroimage ; 117: 343-57, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25837600

RESUMO

Large amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-dimensional information for computational neuroscience applications standardized data fusion and efficient reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used for computational brain modeling to constrain models with individual measurable features of the brain, such as done with The Virtual Brain (TVB). TVB is a simulation platform that uses empirical structural and functional data to build full brain models of individual humans. For convenient model construction, we developed a processing pipeline for structural, functional and diffusion-weighted magnetic resonance imaging (MRI) and optionally electroencephalography (EEG) data. The pipeline combines several state-of-the-art neuroinformatics tools to generate subject-specific cortical and subcortical parcellations, surface-tessellations, structural and functional connectomes, lead field matrices, electrical source activity estimates and region-wise aggregated blood oxygen level dependent (BOLD) functional MRI (fMRI) time-series. The output files of the pipeline can be directly uploaded to TVB to create and simulate individualized large-scale network models that incorporate intra- and intercortical interaction on the basis of cortical surface triangulations and white matter tractograpy. We detail the pitfalls of the individual processing streams and discuss ways of validation. With the pipeline we also introduce novel ways of estimating the transmission strengths of fiber tracts in whole-brain structural connectivity (SC) networks and compare the outcomes of different tractography or parcellation approaches. We tested the functionality of the pipeline on 50 multimodal data sets. In order to quantify the robustness of the connectome extraction part of the pipeline we computed several metrics that quantify its rescan reliability and compared them to other tractography approaches. Together with the pipeline we present several principles to guide future efforts to standardize brain model construction. The code of the pipeline and the fully processed data sets are made available to the public via The Virtual Brain website (thevirtualbrain.org) and via github (https://github.com/BrainModes/TVB-empirical-data-pipeline). Furthermore, the pipeline can be directly used with High Performance Computing (HPC) resources on the Neuroscience Gateway Portal (http://www.nsgportal.org) through a convenient web-interface.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Adulto Jovem
20.
J Neurosci ; 33(7): 2900-7, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407948

RESUMO

Learning constitutes a fundamental property of the human brain-yet an unresolved puzzle is the profound variability of the learning success between individuals. Here we highlight the relevance of individual ongoing brain states as sources of the learning variability in exposure-based somatosensory perceptual learning. Electroencephalogram recordings of ongoing rhythmic brain activity before and during learning revealed that prelearning parietal alpha oscillations as well as during-learning stimulus-induced contralateral central alpha changes are predictive for the learning outcome. These two distinct alpha rhythm sources predicted up to 64% of the observed learning variability, one source representing an idling state with posteroparietal focus and a potential link to the default mode network, the other representing the sensorimotor mu rhythm, whose desynchronization is indicative for the degree of engagement of sensorimotor neuronal populations during application of the learning stimuli. Unspecific effects due to global shifts of attention or vigilance do not explain our observations. Our study thus suggests a brain state-dependency of perceptual learning success in humans opening new avenues for supportive learning tools in the clinical and educational realms.


Assuntos
Aprendizagem/fisiologia , Percepção/fisiologia , Adulto , Ritmo alfa/fisiologia , Nível de Alerta/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Sincronização Cortical , Interpretação Estatística de Dados , Discriminação Psicológica/fisiologia , Estimulação Elétrica , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Individualidade , Masculino , Neurônios/fisiologia , Estimulação Física , Desempenho Psicomotor/fisiologia , Limiar Sensorial/fisiologia , Tato , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA