RESUMO
BACKGROUND AND AIMS: Adipose triglyceride lipase (ATGL) is an attractive therapeutic target in insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigated the effects of pharmacological ATGL inhibition on the development of metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis in mice. METHODS: Streptozotocin-injected male mice were fed an HFD to induce MASH. Mice receiving the ATGL inhibitor, Atglistatin (ATGLi), were compared to controls using liver histology, lipidomics, metabolomics, 16s rRNA, and RNA sequencing. Human ileal organoids, HepG2 cells, and Caco2 cells treated with the human ATGL inhibitor NG-497, HepG2 ATGL knockdown cells, gel-shift, and luciferase assays were analysed for mechanistic insights. We validated its benefits on steatohepatitis and fibrosis in a low-methionine choline-deficient mouse model. RESULTS: ATGLi improved serum liver enzymes, hepatic lipid content, and histological liver injury. Mechanistically, ATGLi attenuated PPARα signalling, favouring hydrophilic bile acid (BA) synthesis with increased Cyp7a1, Cyp27a1, Cyp2c70, and reduced Cyp8b1 expression. Additionally, reduced intestinal Cd36 and Abca1, along with increased Abcg5 expression, were consistent with reduced levels of hepatic TAG-species containing PUFAs like linoleic acids as well as reduced cholesterol levels in the liver and plasma. Similar changes in gene expression associated with PPARα signaling and intestinal lipid transport were observed in ileal organoids treated with NG-497. Furthermore, HepG2 ATGL knockdown cells revealed reduced expression of PPARα target genes and upregulation of genes involved in hydrophilic BA synthesis, consistent with reduced PPARα binding and luciferase activity in the presence of the ATGL inhibitors. CONCLUSIONS: Inhibition of ATGL attenuates PPARα signalling, translating into hydrophilic BAs, interfering with dietary lipid absorption, and improving metabolic disturbances. The validation with NG-497 opens a new therapeutic perspective for MASLD. IMPACT AND IMPLICATIONS: The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is a crucial public health concern. Since adherence to behavioural interventions is limited, pharmacological strategies are necessary, as highlighted by the recent FDA approval of resmetirom. However, since our current mechanistic understanding and pathophysiology-oriented therapeutic options for MASLD are still limited, novel mechanistic insights are urgently needed. Our present work uncovers that pharmacological inhibition of ATGL, the key enzyme in lipid hydrolysis using Atglistatin (ATGLi), improves metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and associated key features of metabolic dysfunction in a mouse model of MASH and MCD-induced liver fibrosis. Mechanistically, we demonstrated that attenuation of PPARα signalling in the liver and gut favours hydrophilic bile acid composition, ultimately interfering with dietary lipid absorption. One of the drawbacks of ATGLi is its lack of efficacy against human ATGL, thus limiting its clinical applicability. Against this backdrop, we could show that ATGL inhibition using the human inhibitor NG-497 in human primary ileum-derived organoids, Caco2 cells, and HepG2 cells translated into therapeutic mechanisms similar to ATGLi. Collectively, these findings open a new avenue for MASLD treatment development by inhibiting human ATGL activity.
RESUMO
Opuntia joconostle is a semi-wild cactus cultivated for its fruit. However, the cladodes are often discarded, wasting the potentially useful mucilage in them. The mucilage is composed primarily of heteropolysaccharides, characterized by their molar mass distribution, monosaccharide composition, structural features (by vibrational spectroscopy, FT IR, and atomic force microscopy, AFM), and fermentability by known saccharolytic commensal members of the gut microbiota. After fractionation with ion exchange chromatography, four polysaccharides were found: one neutral (composed mainly of galactose, arabinose, and xylose) and three acidic, with a galacturonic acid content from 10 to 35%mol. Their average molar masses ranged from 1.8 × 105 to 2.8 × 105 g·mol-1. Distinct structural features such as galactan, arabinan, xylan, and galacturonan motifs were present in the FT IR spectra. The intra- and intermolecular interactions of the polysaccharides, and their effect on the aggregation behavior, were shown by AFM. The composition and structural features of these polysaccharides were reflected in their prebiotic potential. Lactobacilli and Bifidobacteria were not able to utilize them, whereas members of Bacteroidetes showed utilization capacity. The obtained data suggest a high economic potential for this Opuntia species, with potential uses such as animal feed in arid areas, precise prebiotic, and symbiotic formulations, or as the carbon skeleton source in a green refinery. Our methodology can be used to evaluate the saccharides as the phenotype of interest, helping to guide the breeding strategy.
Assuntos
Opuntia , Opuntia/química , Prebióticos , Melhoramento Vegetal , Polissacarídeos/química , GalactanosRESUMO
BACKGROUND: Time-resolved three-directional velocity-encoded (4D flow) magnetic resonance imaging (MRI) enables the quantification of left ventricular (LV) intracavitary fluid dynamics and energetics, providing mechanistic insight into LV dysfunctions. Before becoming a support to diagnosis and patient stratification, this analysis should prove capable of discriminating between clearly different LV derangements. PURPOSE: To investigate the potential of 4D flow in identifying fluid dynamic and energetics derangements in ischemic and restrictive LV cardiomyopathies. STUDY TYPE: Prospective observational study. POPULATION: Ten patients with post-ischemic cardiomyopathy (ICM), 10 patients with cardiac light-chain cardiac amyloidosis (AL-CA), and 10 healthy controls were included. FIELD STRENGTH/SEQUENCE: 1.5 T/balanced steady-state free precession cine and 4D flow sequences. ASSESSMENT: Flow was divided into four components: direct flow (DF), retained inflow, delayed ejection flow, and residual volume (RV). Demographics, LV morphology, flow components, global and regional energetics (volume-normalized kinetic energy [KEV ] and viscous energy loss [ELV ]), and pressure-derived hemodynamic force (HDF) were compared between the three groups. STATISTICAL TESTS: Intergroup differences in flow components were tested by one-way analysis of variance (ANOVA); differences in energetic variables and peak HDF were tested by two-way ANOVA. A P-value of <0.05 was considered significant. RESULTS: ICM patients exhibited the following statistically significant alterations vs. controls: reduced KEV , mostly in the basal region, in systole (-44%) and in diastole (-37%); altered flow components, with reduced DF (-33%) and increased RV (+26%); and reduced basal-apical HDF component on average by 63% at peak systole. AL-CA patients exhibited the following alterations vs. controls: significantly reduced KEV at the E-wave peak in the basal segment (-34%); albeit nonstatistically significant, increased peaks and altered time-course of the HDF basal-apical component in diastole and slightly reduced HDF components in systole. DATA CONCLUSION: The analysis of multiple 4D flow-derived parameters highlighted fluid dynamic alterations associated with systolic and diastolic dysfunctions in ICM and AL-CA patients, respectively. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.
Assuntos
Cardiomiopatia Restritiva , Hidrodinâmica , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Volume Sistólico , Função Ventricular EsquerdaRESUMO
PURPOSE: Little is known about the real impact of the COVID-19 outbreak on the qualitative and quantitative fall-out on the management of cancer patients. Our objective was to provide evidence of the effects of SARS-COV-2 on the management of cancer patients in the real world. METHODS: In a general hospital in a district in Italy with high prevalence of COVID-19 during the first wave, we retrospectively analyzed the data of oncologic activity, namely new cancer diagnosis, types of treatment (intravenous or by mouth), clinical research studies, and drug utilization, and compared the findings with those of 2019, before the pandemic. The data have been summarized in boxplot figures for median and interquartile range. RESULTS: In 2020, a significant reduction in new cancer diagnosis was demonstrated when compared with 2019, with 17.4% fewer cancer diagnoses, 84.5% fewer patients enrolled in clinical trials, a 10.6% reduction in intravenous antitumor treatment, and a 42.7% increase in oral anticancer treatment. CONCLUSION: Our data indicate a significant reduction in cancer diagnosis, antitumor venous treatment, and patients enrolled in clinical research studies in 2020 compared with 2019, although there was a significant increase in oral treatment. These data suggest that the COVID-19 pandemic had a deep impact on the real-world management of cancer patients in a district of Italy with a high prevalence of COVID-19.
Assuntos
COVID-19 , Pandemias , Ensaios Clínicos como Assunto , Hospitais Gerais , Humanos , Itália/epidemiologia , Prevalência , Estudos Retrospectivos , SARS-CoV-2RESUMO
Feasibility assessment and planning of thoracic endovascular aortic repair (TEVAR) require computed tomography (CT)-based analysis of geometric aortic features to identify adequate landing zones (LZs) for endograft deployment. However, no consensus exists on how to take the necessary measurements from CT image data. We trained and applied a fully automated pipeline embedding a convolutional neural network (CNN), which feeds on 3D CT images to automatically segment the thoracic aorta, detects proximal landing zones (PLZs), and quantifies geometric features that are relevant for TEVAR planning. For 465 CT scans, the thoracic aorta and pulmonary arteries were manually segmented; 395 randomly selected scans with the corresponding ground truth segmentations were used to train a CNN with a 3D U-Net architecture. The remaining 70 scans were used for testing. The trained CNN was embedded within computational geometry processing pipeline which provides aortic metrics of interest for TEVAR planning. The resulting metrics included aortic arch centerline radius of curvature, proximal landing zones (PLZs) maximum diameters, angulation, and tortuosity. These parameters were statistically analyzed to compare standard arches vs. arches with a common origin of the innominate and left carotid artery (CILCA). The trained CNN yielded a mean Dice score of 0.95 and was able to generalize to 9 pathological cases of thoracic aortic aneurysm, providing accurate segmentations. CILCA arches were characterized by significantly greater angulation (p = 0.015) and tortuosity (p = 0.048) in PLZ 3 vs. standard arches. For both arch configurations, comparisons among PLZs revealed statistically significant differences in maximum zone diameters (p < 0.0001), angulation (p < 0.0001), and tortuosity (p < 0.0001). Our tool allows clinicians to obtain objective and repeatable PLZs mapping, and a range of automatically derived complex aortic metrics.
Assuntos
Implante de Prótese Vascular , Aprendizado Profundo , Procedimentos Endovasculares , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Aortografia/métodos , Prótese Vascular , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares/métodos , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do TratamentoRESUMO
Colorectal cancer is a multifactorial disease involving inherited DNA mutations, environmental factors, gut inflammation and intestinal microbiota. Certain germline mutations within the DNA mismatch repair system are associated with Lynch syndrome tumors including right-sided colorectal cancer with mucinous phenotype and presence of an inflammatory infiltrate. Such tumors are more often associated with bacterial biofilms, which may contribute to disease onset and progression. Inflammatory bowel diseases are also associated with colorectal cancer and intestinal dysbiosis. Herein we addressed the question, whether inflammation can aggravate colorectal cancer development under mismatch repair deficiency. MSH2loxP/loxP Vill-cre mice were crossed into the IL-10-/- background to study the importance of inflammation and mucosal bacteria as a driver of tumorigenesis in a Lynch syndrome mouse model. An increase in large bowel tumorigenesis was found in double knockout mice both under conventional housing and under specific pathogen-free conditions. This increase was mostly due to the development of proximal tumors, a hotspot for tumorigenesis in Lynch syndrome, and was associated with a higher degree of inflammation. Additionally, bacterial invasion into the mucus of tumor crypts was observed in the proximal tumors. Inflammation shifted fecal and mucosal microbiota composition and was associated with enrichment in Escherichia-Shigella as well as Akkermansia, Bacteroides and Parabacteroides genera in fecal samples. Tumor-bearing double knockout mice showed a similar enrichment for Escherichia-Shigella and Parabacteroides. Lactobacilli, Lachnospiraceae and Muribaculaceae family members were depleted upon inflammation. In summary, chronic inflammation aggravates colonic tumorigenesis under mismatch repair deficiency and is associated with a shift in microbiota composition.
Assuntos
Carcinogênese/patologia , Neoplasias Colorretais Hereditárias sem Polipose/microbiologia , Neoplasias Colorretais Hereditárias sem Polipose/parasitologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Animais , Bactérias/patogenicidade , Biofilmes/crescimento & desenvolvimento , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Modelos Animais de Doenças , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Microbioma Gastrointestinal/genética , Mutação em Linhagem Germinativa/genética , Inflamação/genética , Inflamação/microbiologia , Inflamação/patologia , Interleucina-10/genética , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Background Cancer patients can be a human model of potential drug interactions. Usually they receive a large number of different medications, including antineoplastic agents, drugs for comorbid illness and medication for supportive care, however information about these interactions are fragmented and poor. Objective We assessed a prospective study to evaluate the prevalence of drug interaction among patients hospitalized in the Onco-Haematology department, Hospital of Piacenza. Methods Data on drugs administered for cancer, comorbidities, or supportive care were collected from different computerized prescription software in use in the department; we compared them with a database to focus on the co-administration of drugs. A literature review was performed to identify major potential drug interaction and to classify them by level of severity and by strengths of scientific evidence. Results In this study 284 cancer patients were enrolled; patients had taken an average of seven drugs on each day of therapy plus chemotherapeutic agents, we identified 67 potential drug interactions. At least 53 patients had one potential drug interaction. Of all potential drug interactions 63 were classified as moderate severity and only four as major. In 55 cases chemotherapeutic agents were involved in possible interactions with supportive care drugs, meanwhile in 12 cases the potential drug interactions were between supportive care drugs. Conclusions In our centre, thanks to a computerized prescription software, integrated with caution alarm in case of possible interaction, we had a lower rate of potential drug interactions than the one from literature. It is possible to improve the software integrating the alarm with the potential drug interactions between chemotherapy agents and supportive care drugs.
Assuntos
Antineoplásicos/administração & dosagem , Interações Medicamentosas , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Comorbidade , Bases de Dados Factuais , Feminino , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos ProspectivosRESUMO
An altered gut microbiota has been linked to obesity in adulthood, although little is known about childhood obesity. The aim of this study was to characterize the composition of the gut microbiota in obese (n = 42) and normal-weight (n = 36) children aged 6 to 16. Using 16S rRNA gene-targeted sequencing, we evaluated taxa with differential abundance according to age- and sex-normalized body mass index (BMI z-score). Obesity was associated with an altered gut microbiota characterized by elevated levels of Firmicutes and depleted levels of Bacteroidetes. Correlation network analysis revealed that the gut microbiota of obese children also had increased correlation density and clustering of operational taxonomic units (OTUs). Members of the Bacteroidetes were generally better predictors of BMI z-score and obesity than Firmicutes, which was likely due to discordant responses of Firmicutes OTUs. In accordance with these observations, the main metabolites produced by gut bacteria, short chain fatty acids (SCFAs), were higher in obese children, suggesting elevated substrate utilisation. Multiple taxa were correlated with SCFA levels, reinforcing the tight link between the microbiota, SCFAs and obesity. Our results suggest that gut microbiota dysbiosis and elevated fermentation activity may be involved in the etiology of childhood obesity.
Assuntos
Bacteroidetes/crescimento & desenvolvimento , Disbiose/microbiologia , Ácidos Graxos Voláteis/metabolismo , Firmicutes/crescimento & desenvolvimento , Microbioma Gastrointestinal/genética , Obesidade Infantil/microbiologia , Adolescente , Bacteroidetes/classificação , Bacteroidetes/genética , Criança , Dieta , Fezes/microbiologia , Feminino , Fermentação/genética , Firmicutes/classificação , Firmicutes/genética , Humanos , Masculino , Tipagem Molecular , RNA Ribossômico 16S/genéticaRESUMO
The H2-A(g7) (A(g7)) MHC class II (MHCII) allele is required for type 1 diabetes (T1D) in NOD mice. A(g7) not only has a unique peptide-binding profile, it was reported to exhibit biochemical defects, including accelerated protein turnover. Such defects were proposed to impair Ag presentation and, thus, self-tolerance. Here, we report measurements of MHCII protein synthesis and turnover in vivo. NOD mice and BALB/c controls were labeled continuously with heavy water, and splenic B cells and dendritic cells were isolated. MHCII molecules were immunoprecipitated and digested with trypsin. Digests were analyzed by liquid chromatography/mass spectrometry to quantify the fraction of newly synthesized MHCII molecules and, thus, turnover. MHCII turnover was faster in dendritic cells than in B cells, varying slightly between mouse strains. Some A(g7) molecules exhibited accelerated turnover in B cells from young, but not older, prediabetic female NOD mice. This acceleration was not detected in a second NOD colony with a high incidence of T1D. Turnover rates of A(g7) and H2-A(d) were indistinguishable in (NOD × BALB/c) F1 mice. In conclusion, accelerated MHCII turnover may occur in NOD mice, but it reflects environmental and developmental regulation, rather than a structural deficit of the A(g7) allele. Moreover, this phenotype wanes before the onset of overt T1D and is dispensable for the development of autoimmune diabetes. Our observations highlight the importance of in vivo studies in understanding the role of protein turnover in genotype/phenotype relationships and offer a novel approach for addressing this fundamental research challenge.
Assuntos
Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Cromatografia Líquida , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe II/imunologia , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NODRESUMO
Diastolic vortex ring (VR) plays a key role in the blood-pumping function exerted by the left ventricle (LV), with altered VR structures being associated with LV dysfunction. Herein, we sought to characterize the VR diastolic alterations in ischemic cardiomyopathy (ICM) patients with systo-diastolic LV dysfunction, as compared to healthy controls, in order to provide a more comprehensive understanding of LV diastolic function. 4D Flow MRI data were acquired in ICM patients (n = 15) and healthy controls (n = 15). The λ2 method was used to extract VRs during early and late diastolic filling. Geometrical VR features, e.g., circularity index (CI), orientation (α), and inclination with respect to the LV outflow tract (ß), were extracted. Kinetic energy (KE), rate of viscous energy loss ( EL Ë ), vorticity (W), and volume (V) were computed for each VR; the ratios with the respective quantities computed for the entire LV were derived. At peak E-wave, the VR was less circular (p = 0.032), formed a smaller α with the LV long-axis (p = 0.003) and a greater ß (p = 0.002) in ICM patients as compared to controls. At peak A-wave, CI was significantly increased (p = 0.034), while α was significantly smaller (p = 0.016) and ß was significantly increased (p = 0.036) in ICM as compared to controls. At both peak E-wave and peak A-wave, EL Ë VR / EL Ë LV , WVR/WLV, and VVR/VLV significantly decreased in ICM patients vs. healthy controls. KEVR/VVR showed a significant decrease in ICM patients with respect to controls at peak E-wave, while VVR remained comparable between normal and pathologic conditions. In the analyzed ICM patients, the diastolic VRs showed alterations in terms of geometry and energetics. These derangements might be attributed to both structural and functional alterations affecting the infarcted wall region and the remote myocardium.
RESUMO
Dietary fiber supplements are a strategy to close the 'fiber gap' and induce targeted modulations of the gut microbiota. However, higher doses of fiber supplements cause gastrointestinal (GI) symptoms that differ among individuals. What determines these inter-individual differences is insufficiently understood. Here we analyzed findings from a six-week randomized controlled trial that evaluated GI symptoms to corn bran arabinoxylan (AX; n = 15) relative to non-fermentable microcrystalline cellulose (MCC; n = 16) at efficacious supplement doses of 25 g/day (females) or 35 g/day (males) in adults with excess weight. Self-reported flatulence, bloating, and stomach aches were evaluated weekly. Bacterial taxa involved in AX fermentation were identified by bioorthogonal non-canonical amino acid tagging. Associations between GI symptoms, fecal microbiota features, and diet history were systematically investigated. AX supplementation increased symptoms during the first three weeks relative to MCC (p < 0.05, Mann-Whitney tests), but subjects 'adapted' with symptoms reverting to baseline levels toward the end of treatment. Symptom adaptations were individualized and correlated with the relative abundance of Bifidobacterium longum at baseline (rs = 0.74, p = 0.002), within the bacterial community that utilized AX (rs = 0.69, p = 0.006), and AX-induced shifts in acetate (rs = 0.54, p = 0.039). Lower baseline consumption of animal-based foods and higher whole grains associated with less severity and better adaptation. These findings suggest that humans do 'adapt' to tolerate efficacious fiber doses, and this process is linked to their microbiome and dietary factors known to interact with gut microbes, providing a basis for the development of strategies for improved tolerance of dietary fibers.
Assuntos
Bifidobacterium longum , Fibras na Dieta , Fezes , Microbioma Gastrointestinal , Xilanos , Xilanos/metabolismo , Humanos , Fezes/microbiologia , Fezes/química , Masculino , Feminino , Fibras na Dieta/metabolismo , Pessoa de Meia-Idade , Microbioma Gastrointestinal/efeitos dos fármacos , Bifidobacterium longum/metabolismo , Adulto , Suplementos Nutricionais/análise , Fermentação , Idoso , Adaptação FisiológicaRESUMO
Exclusive enteral nutrition (EEN) is a first-line therapy for pediatric Crohn's disease (CD), but protective mechanisms remain unknown. We established a prospective pediatric cohort to characterize the function of fecal microbiota and metabolite changes of treatment-naive CD patients in response to EEN (German Clinical Trials DRKS00013306). Integrated multi-omics analysis identified network clusters from individually variable microbiome profiles, with Lachnospiraceae and medium-chain fatty acids as protective features. Bioorthogonal non-canonical amino acid tagging selectively identified bacterial species in response to medium-chain fatty acids. Metagenomic analysis identified high strain-level dynamics in response to EEN. Functional changes in diet-exposed fecal microbiota were further validated using gut chemostat cultures and microbiota transfer into germ-free Il10-deficient mice. Dietary model conditions induced individual patient-specific strain signatures to prevent or cause inflammatory bowel disease (IBD)-like inflammation in gnotobiotic mice. Hence, we provide evidence that EEN therapy operates through explicit functional changes of temporally and individually variable microbiome profiles.
RESUMO
Post-ischemic left ventricular (LV) remodeling is a biologically complex process involving myocardial structure, LV shape, and function, beginning early after myocardial infarction (MI) and lasting until 1 year. Adverse remodeling is a post-MI maladaptive process that has been associated with long-term poor clinical outcomes. Cardiac Magnetic Resonance (CMR) is the best tool to define adverse remodeling because of its ability to accurately measure LV end-diastolic and end-systolic volumes and their variation over time and to characterize the underlying myocardial changes. Therefore, CMR is the gold standard method to assess in vivo myocardial infarction extension and to detect the presence of microvascular obstruction and intramyocardial hemorrhage, both associated with adverse remodeling. In recent times, new CMR quantitative biomarkers emerged as predictive of post-ischemic adverse remodeling, such as T1 mapping, myocardial strain, and 4D flow. Additionally, CMR T1 mapping imaging may depict infarcted tissue and assess diffuse myocardial fibrosis by using surrogate markers such as extracellular volume fraction, which may predict functional recovery or risk stratification of remodeling. Finally, there is emerging evidence supporting the utility of intracavitary blood flow kinetic energy and hemodynamic features assessed by the 4D flow CMR technique as early predictors of remodeling.
RESUMO
The total kinetic energy (KE) of blood can be decomposed into mean KE (MKE) and turbulent KE (TKE), which are associated with the phase-averaged fluid velocity field and the instantaneous velocity fluctuations, respectively. The aim of this study was to explore the effects of pharmacologically induced stress on MKE and TKE in the left ventricle (LV) in a cohort of healthy volunteers. 4D Flow MRI data were acquired in eleven subjects at rest and after dobutamine infusion, at a heart rate that was â¼60% higher than the one in rest conditions. MKE and TKE were computed as volume integrals over the whole LV and as data mapped to functional LV flow components, i.e., direct flow, retained inflow, delayed ejection flow and residual volume. Diastolic MKE and TKE increased under stress, in particular at peak early filling and peak atrial contraction. Augmented LV inotropy and cardiac frequency also caused an increase in direct flow and retained inflow MKE and TKE. However, the TKE/KE ratio remained comparable between rest and stress conditions, suggesting that LV intracavitary fluid dynamics can adapt to stress conditions without altering the TKE to KE balance of the normal left ventricle at rest.
RESUMO
BACKGROUND & AIMS: Glucagon-like peptide (GLP)-2 may exert antifibrotic effects on hepatic stellate cells (HSCs). Thus, we aimed to test whether application of the GLP-2 analogue teduglutide has hepatoprotective and antifibrotic effects in the Mdr2/Abcb4-/- mouse model of sclerosing cholangitis displaying hepatic inflammation and fibrosis. METHODS: Mdr2-/- mice were injected daily for 4 weeks with teduglutide followed by gene expression profiling (bulk liver; isolated HSCs) and immunohistochemistry. Activated HSCs (LX2 cells) and immortalized human hepatocytes and human intestinal organoids were treated with GLP-2. mRNA profiling by reverse transcription polymerase chain reaction and electrophoretic mobility shift assay using cytosolic and nuclear protein extracts was performed. RESULTS: Hepatic inflammation, fibrosis, and reactive cholangiocyte phenotype were improved in GLP-2-treated Mdr2-/- mice. Primary HSCs isolated from Mdr2-/- mice and LX2 cells exposed to GLP-2 in vitro displayed significantly increased mRNA expression levels of NR4a1/Nur77 (P < .05). Electrophoretic mobility shift assay revealed an increased nuclear NR4a1 binding after GLP-2 treatment in LX2 cells. Moreover, GLP-2 alleviated the Tgfß-mediated reduction of NR4a1 nuclear binding activity. In vivo, GLP-2 treatment of Mdr2-/- mice resulted in increased intrahepatic levels of muricholic acids (accordingly Cyp2c70 mRNA expression was significantly increased), and in reduced mRNA levels of Cyp7a1 and FXR. Serum Fgf15 levels were increased in Mdr2-/- mice treated with GLP-2. Accordingly, GLP-2 treatment of human intestinal organoids activated their FXR-FGF19 signaling axis. CONCLUSIONS: GLP-2 treatment increased NR4a1/Nur77 activation in HSCs, subsequently attenuating their activation. GLP-2 promoted intestinal Fxr-Fgf15/19 signaling resulting in reduced Cyp7a1 and increased Cyp2c70 expression in the liver, contributing to hepatoprotective and antifibrotic effects of GLP-2 in the Mdr2-/- mouse model.
Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Humanos , Animais , Células Estreladas do Fígado/metabolismo , Camundongos Knockout , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Modelos Animais de Doenças , RNA Mensageiro/metabolismo , Inflamação/metabolismoRESUMO
Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.
Assuntos
Microbioma Gastrointestinal , Inulina , Inulina/metabolismo , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias , PrebióticosRESUMO
This review discusses mechanisms that link allelic variants of major histocompatibility complex (MHC) class II molecules (MHCII) to immune pathology. We focus on HLA (human leukocyte antigen)-DQ (DQ) alleles associated with celiac disease (CD) and type 1 diabetes (T1D) and the role of the murine DQ-like allele, H2-Ag7 (I-Ag7 or Ag7), in murine T1D. MHCII molecules bind peptides, and alleles vary in their peptide-binding specificity. Disease-associated alleles permit binding of disease-inducing peptides, such as gluten-derived, Glu-/Pro-rich gliadin peptides in CD and peptides from islet autoantigens, including insulin, in T1D. In addition, the CD-associated DQ2.5 and DQ8 alleles are unusual in their interactions with factors that regulate their peptide loading, invariant chain (Ii) and HLA-DM (DM). The same alleles, as well as other T1D DQ risk alleles (and Ag7), share nonpolar residues in place of Asp at ß57 and prefer peptides that place acidic side chains in a pocket in the MHCII groove (P9). Antigen-presenting cells from T1D-susceptible mice and humans retain CLIP because of poor DM editing, although underlying mechanisms differ between species. We propose that these effects on peptide presentation make key contributions to CD and T1D pathogenesis.
Assuntos
Doença Celíaca/genética , Diabetes Mellitus Tipo 1/genética , Antígenos H-2/genética , Antígenos HLA-DQ/genética , Peptídeos/genética , Alelos , Animais , Doença Celíaca/imunologia , Diabetes Mellitus Tipo 1/imunologia , Variação Genética/genética , Antígenos H-2/imunologia , Antígenos HLA-DQ/imunologia , Humanos , Peptídeos/imunologiaRESUMO
BACKGROUND: Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in adults with excess weight (BMI: 25-35 kg/m2) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible microcrystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interactions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by fecal microbiota features or mechanistic biomarkers. RESULTS: AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance (HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermentation (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC. CONCLUSION: This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic applications and their personalization. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.
Assuntos
Microbioma Gastrointestinal , Adulto , Bactérias , Ácidos e Sais Biliares/análise , Biomarcadores/análise , Fibras na Dieta , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/farmacologia , Masculino , Obesidade/microbiologiaRESUMO
Acute hepatotoxicity is a rare but potentially fatal complication of amiodarone use. Although oral long-term use of the drug is frequently complicated by an asymptomatic rise in serum aminotransferase concentrations, acute hepatotoxicity during intravenous loading is much less frequent and potentially fatal. We report a case of liver injury after intravenous administration in a patient with atrial fibrillation.
Assuntos
Amiodarona/efeitos adversos , Antiarrítmicos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Idoso de 80 Anos ou mais , Amiodarona/administração & dosagem , Amiodarona/uso terapêutico , Antiarrítmicos/administração & dosagem , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Serviço Hospitalar de Emergência , Feminino , Humanos , Infusões IntravenosasRESUMO
Blood is generally modeled as a Newtonian fluid, assuming a standard and constant viscosity; however, this assumption may not hold for the highly pulsatile and recirculating intracavitary flow in the left ventricle (LV), hampering the quantification of fluid dynamic indices of potential clinical relevance. Herein, we investigated the effect of three viscosity models on the patient-specific quantification of LV blood energetics, namely on viscous energy loss (EL), from 4D Flow magnetic resonance imaging: I) Newtonian with standard viscosity (3.7 cP), II) Newtonian with subject-specific hematocrit-dependent viscosity, III) non-Newtonian accounting for the effect of hematocrit and shear rate. Analyses were performed on 5 controls and 5 patients with cardiac light-chain amyloidosis. In Model II, viscosity ranged between 3.0 (-19%) and 4.3 cP (+16%), mildly deviating from the standard value. In the non-Newtonian model, this effect was emphasized: viscosity ranged from 3.2 to 6.0 cP, deviating maximally from the standard value in low shear rate (i.e., <100 s-1) regions. This effect reflected on EL quantifications: in particular, as compared to Model I, Model III yielded markedly higher EL values (up to +40%) or markedly lower (down to -21%) for subjects with hematocrit higher than 39.5% and lower than 30%, respectively. Accounting for non-Newtonian blood behavior on a patient-specific basis may enhance the accuracy of intracardiac energetics assessment by 4D Flow, which may be explored as non-invasive index to discriminate between healthy and pathologic LV.