Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 198(7): 2943-2956, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213501

RESUMO

Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.


Assuntos
Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica/imunologia , Células Progenitoras Linfoides/metabolismo , Animais , Southern Blotting , Western Blotting , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Recombinação V(D)J/genética
2.
Cancer Res ; 78(10): 2705-2720, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29490948

RESUMO

To date, no consistent oncogenic driver mutations have been identified in most adult soft tissue sarcomas; these tumors are thus generally insensitive to existing targeted therapies. Here we investigated alternate mechanisms underlying sarcomagenesis to identify potential therapeutic interventions. Undifferentiated pleomorphic sarcoma (UPS) is an aggressive tumor frequently found in skeletal muscle where deregulation of the Hippo pathway and aberrant stabilization of its transcriptional effector yes-associated protein 1 (YAP1) increases proliferation and tumorigenesis. However, the downstream mechanisms driving this deregulation are incompletely understood. Using autochthonous mouse models and whole genome analyses, we found that YAP1 was constitutively active in some sarcomas due to epigenetic silencing of its inhibitor angiomotin (AMOT). Epigenetic modulators vorinostat and JQ1 restored AMOT expression and wild-type Hippo pathway signaling, which induced a muscle differentiation program and inhibited sarcomagenesis. YAP1 promoted sarcomagenesis by inhibiting expression of ubiquitin-specific peptidase 31 (USP31), a newly identified upstream negative regulator of NFκB signaling. Combined treatment with epigenetic modulators effectively restored USP31 expression, resulting in decreased NFκB activity. Our findings highlight a key underlying molecular mechanism in UPS and demonstrate the potential impact of an epigenetic approach to sarcoma treatment.Significance: A new link between Hippo pathway signaling, NFκB, and epigenetic reprogramming is highlighted and has the potential for therapeutic intervention in soft tissue sarcomas. Cancer Res; 78(10); 2705-20. ©2018 AACR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/patologia , NF-kappa B/metabolismo , Fosfoproteínas/metabolismo , Sarcoma/patologia , Neoplasias de Tecidos Moles/patologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/biossíntese , Angiomotinas , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Músculo Esquelético/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Sarcoma/genética , Transdução de Sinais/genética , Neoplasias de Tecidos Moles/genética , Fatores de Transcrição , Triazóis/farmacologia , Vorinostat/farmacologia , Proteínas de Sinalização YAP
3.
Cell Death Dis ; 9(11): 1108, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382078

RESUMO

Terminal differentiation opposes proliferation in the vast majority of tissue types. As a result, loss of lineage differentiation is a hallmark of aggressive cancers, including soft tissue sarcomas (STS). Consistent with these observations, undifferentiated pleomorphic sarcoma (UPS), an STS subtype devoid of lineage markers, is among the most lethal sarcomas in adults. Though tissue-specific features are lost in these mesenchymal tumors they are most commonly diagnosed in skeletal muscle, and are thought to develop from transformed muscle progenitor cells. We have found that a combination of HDAC (Vorinostat) and BET bromodomain (JQ1) inhibition partially restores differentiation to skeletal muscle UPS cells and tissues, enforcing a myoblast-like identity. Importantly, differentiation is partially contingent upon downregulation of the Hippo pathway transcriptional effector Yes-associated protein 1 (YAP1) and nuclear factor (NF)-κB. Previously, we observed that Vorinostat/JQ1 inactivates YAP1 and restores oscillation of NF-κB in differentiating myoblasts. These effects correlate with reduced tumorigenesis, and enhanced differentiation. However, the mechanisms by which the Hippo/NF-κB axis impact differentiation remained unknown. Here, we report that YAP1 and NF-κB activity suppress circadian clock function, inhibiting differentiation and promoting proliferation. In most tissues, clock activation is antagonized by the unfolded protein response (UPR). However, skeletal muscle differentiation requires both Clock and UPR activity, suggesting the molecular link between them is unique in muscle. In skeletal muscle-derived UPS, we observed that YAP1 suppresses PERK and ATF6-mediated UPR target expression as well as clock genes. These pathways govern metabolic processes, including autophagy, and their disruption shifts metabolism toward cancer cell-associated glycolysis and hyper-proliferation. Treatment with Vorinostat/JQ1 inhibited glycolysis/MTOR signaling, activated the clock, and upregulated the UPR and autophagy via inhibition of YAP1/NF-κB. These findings support the use of epigenetic modulators to treat human UPS. In addition, we identify specific autophagy, UPR, and muscle differentiation-associated genes as potential biomarkers of treatment efficacy and differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Musculares/genética , NF-kappa B/genética , Sarcoma/genética , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Musculares/tratamento farmacológico , Neoplasias Musculares/metabolismo , Neoplasias Musculares/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/patologia , NF-kappa B/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Sarcoma/patologia , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Triazóis/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Vorinostat/farmacologia , Proteínas de Sinalização YAP , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
4.
Trends Mol Med ; 22(12): 1035-1046, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28240214

RESUMO

It has been appreciated for decades that somatic genomic alterations that change coding sequences of proto-oncogenes, translocate enhancers/promoters near proto-oncogenes, or create fusion oncogenes can drive cancer by inducing oncogenic activities. An explosion of genome-wide technologies over the past decade has fueled discoveries of the roles of three-dimensional chromosome structure and powerful cis-acting elements (super-enhancers) in regulating gene transcription. In recent years, studies of human T cell acute lymphoblastic leukemia (T-ALL) using genome-wide technologies have provided paradigms for how non-coding genomic region alterations can disrupt 3D chromosome architecture or establish super-enhancers to activate oncogenic transcription of proto-oncogenes. These studies raise important issues to consider with the objective of leveraging basic knowledge into new diagnostic and therapeutic opportunities for cancer patients.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Expressão Ectópica do Gene , Genoma Humano , Humanos , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Ativação Transcricional
5.
Cell Cycle ; 15(21): 2882-2894, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27327568

RESUMO

Mammalian cells are thought to protect themselves and their host organisms from DNA double strand breaks (DSBs) through universal mechanisms that restrain cellular proliferation until DNA is repaired. The Cyclin D3 protein drives G1-to-S cell cycle progression and is required for proliferation of immature T and B cells and of mature B cells during a T cell-dependent immune response. We demonstrate that mouse thymocytes and pre-B cells, but not mature B cells, repress Cyclin D3 protein levels in response to DSBs. This response requires the ATM protein kinase that is activated by DSBs. Cyclin D3 protein loss in thymocytes coincides with decreased association of Cyclin D3 mRNA with the HuR RNA binding protein that ATM regulates. HuR inactivation reduces basal Cyclin D3 protein levels without affecting Cyclin D3 mRNA levels, indicating that thymocytes repress Cyclin D3 expression via ATM-dependent inhibition of Cyclin D3 mRNA translation. In contrast, ATM-dependent transcriptional repression of the Cyclin D3 gene represses Cyclin D3 protein levels in pre-B cells. Retrovirus-driven Cyclin D3 expression is resistant to transcriptional repression by DSBs; this prevents pre-B cells from suppressing Cyclin D3 protein levels and from inhibiting DNA synthesis to the normal extent following DSBs. Our data indicate that immature B and T cells use lymphocyte lineage- and developmental stage-specific mechanisms to inhibit Cyclin D3 protein levels and thereby help prevent cellular proliferation in response to DSBs. We discuss the relevance of these cellular context-dependent DSB response mechanisms in restraining proliferation, maintaining genomic integrity, and suppressing malignant transformation of lymphocytes.


Assuntos
Linhagem da Célula , Ciclina D3/genética , Quebras de DNA de Cadeia Dupla , Crescimento e Desenvolvimento , Linfócitos/citologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/citologia , Linfócitos B/efeitos da radiação , Linhagem da Célula/genética , Linhagem da Célula/efeitos da radiação , Proliferação de Células/efeitos da radiação , Ciclina D3/metabolismo , DNA/biossíntese , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Proteína Semelhante a ELAV 1/metabolismo , Crescimento e Desenvolvimento/genética , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiação Ionizante , Retroviridae/metabolismo , Transdução de Sinais/efeitos da radiação , Especificidade por Substrato/efeitos da radiação , Linfócitos T/citologia , Linfócitos T/efeitos da radiação , Transcrição Gênica/efeitos da radiação
6.
Mol Cancer Ther ; 14(10): 2260-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26227489

RESUMO

The purpose of this study was to investigate the molecular and therapeutic effects of siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer. Statistical analysis of patient's data extracted from The Cancer Genome Atlas (TCGA) portal showed that the disease-free (DFS) and the overall (OS) survival were decreased in ovarian cancer patients with high c-MYC mRNA levels. Furthermore, analysis of a panel of ovarian cancer cell lines showed that c-MYC protein levels were higher in cisplatin-resistant cells when compared with their cisplatin-sensitive counterparts. In vitro cell viability, growth, cell-cycle progression, and apoptosis, as well as in vivo therapeutic effectiveness in murine xenograft models, were also assessed following siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer cells. Significant inhibition of cell growth and viability, cell-cycle arrest, and activation of apoptosis were observed upon siRNA-mediated c-MYC depletion. In addition, single weekly doses of c-MYC-siRNA incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000)-based nanoliposomes resulted in significant reduction in tumor growth. These findings identify c-MYC as a potential therapeutic target for ovarian cancers expressing high levels of this oncoprotein.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Neoplasias Ovarianas/mortalidade , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA