RESUMO
In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Regulação da Expressão Gênica , Homeostase , Humanos , Transporte de Íons , Cinética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais , Modelos Moleculares , Trocador de Sódio e Cálcio/genética , TermodinâmicaRESUMO
Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.
Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Canais de Potássio/metabolismo , Animais , Cardiotônicos/farmacologia , Diazóxido/farmacologia , Fenômenos Eletrofisiológicos , Coração/efeitos dos fármacos , Coração/fisiologia , Precondicionamento Isquêmico Miocárdico , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Fosforilação Oxidativa , Potássio/metabolismo , Canais de Potássio/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismoRESUMO
During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose , Autofagia , Canais de Cálcio/metabolismo , Humanos , Modelos BiológicosRESUMO
Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca2+ one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca2+ concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca2+ uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca2+ uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca2+] responses.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Músculo Esquelético/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Transporte de Íons , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca2+ homeostasis.
Assuntos
Canais de Cálcio/metabolismo , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Metaloendopeptidases/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Morte Celular , Cerebelo/patologia , Corpo Estriado/patologia , Regulação da Expressão Gênica , Células HEK293 , Hipocampo/patologia , Homeostase/genética , Humanos , Transporte de Íons , Metaloendopeptidases/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Neurônios/patologia , Mapeamento de Interação de Proteínas , Transdução de SinaisRESUMO
The large environmental contamination of drinking water by perfluoroalkyl substances (PFAS) markedly increased the plasma levels of pentadecafluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in a Northern Italy population with a high prevalence of arterial hypertension and cardiovascular disease. As the link between PFAS and arterial hypertension is unknown, we investigated if they enhance the biosynthesis of the well-known pressor hormone aldosterone. We found that PFAS increased aldosterone synthase (CYP11B2) gene expression by three-fold and doubled aldosterone secretion and cell and mitochondria reactive oxygen species (ROS) production over controls (p < 0.01 for all) in human adrenocortical carcinoma cells HAC15. They also enhanced the effects of Ang II on CYP11B2 mRNA and aldosterone secretion (p < 0.01 for all). Moreover, when added 1 h before, the ROS scavenger tempol abolished the effect of PFAS on CYP11B2 gene expression. These results indicate that at concentrations mimicking those found in human plasma of exposed individuals, PFAS are potent disruptors of human adrenocortical cell function, and might act as causative factors of human arterial hypertension via increased aldosterone production.
Assuntos
Neoplasias do Córtex Suprarrenal , Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Hipertensão , Humanos , Aldosterona/metabolismo , Poluentes Ambientais/toxicidade , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Espécies Reativas de Oxigênio , Hipertensão/induzido quimicamente , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidadeRESUMO
BACKGROUND: The active surveillance of students is proposed as an effective strategy to contain SARS-CoV-2 spread and prevent schools' closure. Saliva for molecular testing is as sensitive as naso-pharyngeal swab (NPS), self-collected and well accepted by participants. This prospective study aimed to verify whether the active surveillance of the Padua University employees by molecular testing of self-collected saliva is an effective and affordable strategy for limiting SARS-CoV-2 spread. METHODS: A surveillance program based on self-collection of saliva every 2 weeks (October 2020-June 2021) was conducted. Among 8183 employees of the Padua University, a total of 6284 subjects voluntarily took part in the program. Eight collection points guaranteed the daily distribution and collection of barcoded salivary collection devices, which were delivered to the laboratory by a transport service for molecular testing. Quarantine of positive cases and contact tracing were promptly activated. RESULTS: Among 6284 subjects, 206 individuals were SARS-CoV-2 positive (99 by salivary testing; 107 by NPS performed for contact tracing or symptoms). The cumulative SARS-CoV-2 incidence in this cohort was 3.1%, significantly lower than that of employees not in surveillance (8.0%), in Padua (7.1%) and in the Veneto region (7.2%). Employees with positive saliva results were asymptomatic or had mild symptoms. The levels of serum antibodies after 3 months from the infection were correlated with age and Ct values, being higher in older subjects with greater viral loads. CONCLUSIONS: Salivary-based surveillance with contact tracing effectively allowed to limit SARS-CoV-2 contagion, also in a population with a high incidence.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Pandemias , Estudos Prospectivos , SalivaRESUMO
Mitochondrial calcium accumulation was recently shown to depend on a complex composed of an inner-membrane channel (MCU and MCUb) and regulatory subunits (MICU1, MCUR1, and EMRE). A fundamental property of MCU is low activity at resting cytosolic Ca(2+) concentrations, preventing deleterious Ca(2+) cycling and organelle overload. Here we demonstrate that these properties are ensured by a regulatory heterodimer composed of two proteins with opposite effects, MICU1 and MICU2, which, both in purified lipid bilayers and in intact cells, stimulate and inhibit MCU activity, respectively. Both MICU1 and MICU2 are regulated by calcium through their EF-hand domains, thus accounting for the sigmoidal response of MCU to [Ca(2+)] in situ and allowing tight physiological control. At low [Ca(2+)], the dominant effect of MICU2 largely shuts down MCU activity; at higher [Ca(2+)], the stimulatory effect of MICU1 allows the prompt response of mitochondria to Ca(2+) signals generated in the cytoplasm.
Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Equorina/química , Cálcio/química , Citoplasma/metabolismo , Citosol/metabolismo , Dimerização , Dissulfetos , Eletrofisiologia/métodos , Inativação Gênica , Células HeLa , Humanos , Imuno-Histoquímica , Bicamadas Lipídicas/química , Mitocôndrias/metabolismo , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Transdução de SinaisRESUMO
Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.
Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos/fisiologia , Músculo Esquelético/fisiologia , Aminoácidos/metabolismo , Aminoácidos/fisiologia , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Expressão Gênica , Homeostase , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismoRESUMO
In recent years, rapid discoveries have been made relating to Ca2+ handling at specific organelles that have important implications for whole-cell Ca2+ homeostasis. In particular, the structures of the endoplasmic reticulum (ER) Ca2+ channels revealed by electron cryomicroscopy (cryo-EM), continuous updates on the structure, regulation, and role of the mitochondrial calcium uniporter (MCU) complex, and the analysis of lysosomal Ca2+ signaling are milestones on the route towards a deeper comprehension of the complexity of global Ca2+ signaling. In this review we summarize recent discoveries on the regulation of interorganellar Ca2+ homeostasis and its role in pathophysiology.
Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/fisiologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Homeostase , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Músculo Estriado/metabolismo , Músculo Estriado/ultraestrutura , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismoRESUMO
AIMS/HYPOTHESIS: Mitochondrial oxidative metabolism is central to glucose-stimulated insulin secretion (GSIS). Whether Ca2+ uptake into pancreatic beta cell mitochondria potentiates or antagonises this process is still a matter of debate. Although the mitochondrial Ca2+ importer (MCU) complex is thought to represent the main route for Ca2+ transport across the inner mitochondrial membrane, its role in beta cells has not previously been examined in vivo. METHODS: Here, we inactivated the pore-forming subunit of the MCU, encoded by Mcu, selectively in mouse beta cells using Ins1Cre-mediated recombination. Whole or dissociated pancreatic islets were isolated and used for live beta cell fluorescence imaging of cytosolic or mitochondrial Ca2+ concentration and ATP production in response to increasing glucose concentrations. Electrophysiological recordings were also performed on whole islets. Serum and blood samples were collected to examine oral and i.p. glucose tolerance. RESULTS: Glucose-stimulated mitochondrial Ca2+ accumulation (p< 0.05), ATP production (p< 0.05) and insulin secretion (p< 0.01) were strongly inhibited in beta cell-specific Mcu-null (ßMcu-KO) animals, in vitro, as compared with wild-type (WT) mice. Interestingly, cytosolic Ca2+ concentrations increased (p< 0.001), whereas mitochondrial membrane depolarisation improved in ßMcu-KO animals. ßMcu-KO mice displayed impaired in vivo insulin secretion at 5 min (p< 0.001) but not 15 min post-i.p. injection of glucose, whilst the opposite phenomenon was observed following an oral gavage at 5 min. Unexpectedly, glucose tolerance was improved (p< 0.05) in young ßMcu-KO (<12 weeks), but not in older animals vs WT mice. CONCLUSIONS/INTERPRETATION: MCU is crucial for mitochondrial Ca2+ uptake in pancreatic beta cells and is required for normal GSIS. The apparent compensatory mechanisms that maintain glucose tolerance in ßMcu-KO mice remain to be established.
Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Glucose/metabolismo , Secreção de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.
Assuntos
Cardiotônicos/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos , Modelos Biológicos , Pesquisa Translacional BiomédicaRESUMO
Casein kinase 2 (CK2) is a tetrameric protein kinase composed of 2 catalytic (α and α') and 2 regulatory ß subunits. Our study provides the first molecular and cellular characterization of the different CK2 subunits, highlighting their individual roles in skeletal muscle specification and differentiation. Analysis of C2C12 cell knockout for each CK2 subunit reveals that: 1) CK2ß is mandatory for the expression of the muscle master regulator myogenic differentiation 1 in proliferating myoblasts, thus controlling both myogenic commitment and subsequent muscle-specific gene expression and myotube formation; 2) CK2α is involved in the activation of the muscle-specific gene program; and 3) CK2α' activity regulates myoblast fusion by mediating plasma membrane translocation of fusogenic proteins essential for membrane coalescence, like myomixer. Accordingly, CK2α' overexpression in C2C12 cells and in mouse regenerating muscle is sufficient to increase myofiber size and myonuclei content via enhanced satellite cell fusion. Consistent with these results, pharmacological inhibition of CK2 activity substantially blocks the expression of myogenic markers and muscle cell fusion both in vitro in C2C12 and primary myoblasts and in vivo in mouse regenerating muscle and zebrafish development. Overall, our work describes the specific and coordinated functions of CK2 subunits in orchestrating muscle differentiation and fusogenic activity, highlighting CK2 relevance in the physiopathology of skeletal muscle tissue.-Salizzato, V., Zanin, S., Borgo, C., Lidron, E., Salvi, M., Rizzuto, R., Pallafacchina, G., Donella-Deana, A. Protein kinase CK2 subunits exert specific and coordinated functions in skeletal muscle differentiation and fusogenic activity.
Assuntos
Caseína Quinase II/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Animais , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Fusão Celular , Linhagem Celular , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/enzimologia , Subunidades Proteicas , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/enzimologia , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologiaRESUMO
The mitochondrial Ca2+ uniporter complex (MCUC) is a multimeric ion channel which, by tuning Ca2+ influx into the mitochondrial matrix, finely regulates metabolic energy production. In the heart, this dynamic control of mitochondrial Ca2+ uptake is fundamental for cardiomyocytes to adapt to either physiologic or pathologic stresses. Mitochondrial calcium uniporter (MCU), which is the core channel subunit of MCUC, has been shown to play a critical role in the response to ß-adrenoreceptor stimulation occurring during acute exercise. The molecular mechanisms underlying the regulation of MCU, in conditions requiring chronic increase in energy production, such as physiologic or pathologic cardiac growth, remain elusive. Here, we show that microRNA-1 (miR-1), a member of the muscle-specific microRNA (myomiR) family, is responsible for direct and selective targeting of MCU and inhibition of its translation, thereby affecting the capacity of the mitochondrial Ca2+ uptake machinery. Consistent with the role of miR-1 in heart development and cardiomyocyte hypertrophic remodeling, we additionally found that MCU levels are inversely related with the myomiR content, in murine and, remarkably, human hearts from both physiologic (i.e., postnatal development and exercise) and pathologic (i.e., pressure overload) myocardial hypertrophy. Interestingly, the persistent activation of ß-adrenoreceptors is likely one of the upstream repressors of miR-1 as treatment with ß-blockers in pressure-overloaded mouse hearts prevented its down-regulation and the consequent increase in MCU content. Altogether, these findings identify the miR-1/MCU axis as a factor in the dynamic adaptation of cardiac cells to hypertrophy.
Assuntos
Canais de Cálcio/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Aorta/citologia , Canais de Cálcio/genética , Cardiomegalia/metabolismo , Metabolismo Energético , Humanos , Camundongos , MicroRNAs/genética , Condicionamento Físico Animal , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismoRESUMO
Objective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-ß (transforming growth factor-ß) proteolysis and limits TGF-ß bioavailability in vascular extracellular matrix. Emilin1-/- null mice display increased vascular TGF-ß signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1-/- null mice results from a developmental defect or lack of homeostatic role in the adult. Approach and Results- By using a conditional gene targeting inactivating EMILIN-1 in smooth muscle cells of adult mice, we show that increased blood pressure in mice with selective smooth muscle cell ablation of EMILIN-1 depends on enhanced myogenic tone. Mechanistically, we unveil that higher TGF-ß signaling in smooth muscle cells stimulates HB-EGF (heparin-binding epidermal growth factor) expression and subsequent transactivation of EGFR (epidermal growth factor receptor). With increasing intraluminal pressure in resistance arteries, the cross talk established by TGF-ß and EGFR signals recruits TRPC6 (TRP [transient receptor potential] classical type 6) and TRPM4 (TRP melastatin type 4) channels, lastly stimulating voltage-dependent calcium channels and potentiating myogenic tone. We found reduced EMILIN-1 and enhanced myogenic tone, dependent on increased TGF-ß-EGFR signaling, in resistance arteries from hypertensive patients. Conclusions- Taken together, our findings implicate an unexpected role of the TGF-ß-EGFR pathway in hypertension with current translational perspectives.
Assuntos
Receptores ErbB/metabolismo , Hipertensão/metabolismo , Glicoproteínas de Membrana/metabolismo , Artérias Mesentéricas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea , Canais de Cálcio/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Canais de Cátion TRPM/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Vasoconstrição/efeitos dos fármacosRESUMO
Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work, we studied in Plasmodium falciparum 3 genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission. We studied the expression of P. falciparum genes that show ample sequence and structural homologies with the mammalian counterparts, namely FIS1, DYN1, and DYN2. The encoded proteins are characterized by a distinct pattern of expression throughout the erythrocytic cycle of P. falciparum, and their mRNAs are modulated by treating the parasite with the host hormone melatonin. We have previously reported that the knockout of the Plasmodium gene that codes for protein kinase 7 is essential for melatonin sensing. We here show that PfPk7 knockout results in major alterations of mitochondrial fission genes expression when compared to wild-type parasites, and no change in fission proteins expression upon treatment with the host hormone. Finally, we have compared the morphological characteristics (using MitoTracker Red CMX Ros) and oxygen consumption properties of P. falciparum mitochondria in wild-type parasites and PfPk7 Knockout strains. A novel GFP construct targeted to the mitochondrial matrix to wild-type parasites was also developed to visualize P. falciparum mitochondria. We here show that, the functional characteristics of P. falciparum are profoundly altered in cells lacking protein kinase 7, suggesting that this enzyme plays a major role in the control of mitochondrial morphogenesis and maturation during the intra-erythrocyte cell cycle progression.
Assuntos
Genes de Protozoários/efeitos dos fármacos , Melatonina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia , Plasmodium falciparum/metabolismo , Dinaminas/metabolismo , Eritrócitos/parasitologia , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Proteínas Quinases/metabolismoRESUMO
Mitochondrial Ca2+ is involved in heterogeneous functions, ranging from the control of metabolism and ATP production to the regulation of cell death. In addition, mitochondrial Ca2+ uptake contributes to cytosolic [Ca2+] shaping thus impinging on specific Ca2+-dependent events. Mitochondrial Ca2+ concentration is controlled by influx and efflux pathways: the former controlled by the activity of the mitochondrial Ca2+ uniporter (MCU), the latter by the Na+/Ca2+ exchanger (NCLX) and the H+/Ca2+ (mHCX) exchanger. The molecular identities of MCU and of NCLX have been recently unraveled, thus allowing genetic studies on their physiopathological relevance. After a general framework on the significance of mitochondrial Ca2+ uptake, this review discusses the structure of the MCU complex and the regulation of its activity, the importance of mitochondrial Ca2+ signaling in different physiological settings, and the consequences of MCU modulation on organ physiology.
Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Mitocôndrias/fisiologia , Modelos Animais , Trocador de Sódio e Cálcio/metabolismoRESUMO
Distal hereditary motor neuropathies (dHMNs) are clinically and genetically heterogeneous neurological conditions characterized by degeneration of the lower motor neurons. So far, 18 dHMN genes have been identified, however, about 80% of dHMN cases remain without a molecular diagnosis. By a combination of autozygosity mapping, identity-by-descent segment detection and whole-exome sequencing approaches, we identified two novel homozygous mutations in the SIGMAR1 gene (p.E138Q and p.E150K) in two distinct Italian families affected by an autosomal recessive form of HMN. Functional analyses in several neuronal cell lines strongly support the pathogenicity of the mutations and provide insights into the underlying pathomechanisms involving the regulation of ER-mitochondria tethering, Ca2+ homeostasis and autophagy. Indeed, in vitro, both mutations reduce cell viability, the formation of abnormal protein aggregates preventing the correct targeting of sigma-1R protein to the mitochondria-associated ER membrane (MAM) and thus impinging on the global Ca2+ signalling. Our data definitively demonstrate the involvement of SIGMAR1 in motor neuron maintenance and survival by correlating, for the first time in the Caucasian population, mutations in this gene to distal motor dysfunction and highlight the chaperone activity of sigma-1R at the MAM as a critical aspect in dHMN pathology.
Assuntos
Retículo Endoplasmático/metabolismo , Neuropatia Hereditária Motora e Sensorial/genética , Membranas Mitocondriais/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores sigma/genética , Adulto , Sinalização do Cálcio , Linhagem Celular , Sobrevivência Celular , Feminino , Predisposição Genética para Doença , Técnicas de Genotipagem , Humanos , Itália , Masculino , Linhagem , Análise de Sequência de DNA , Receptor Sigma-1RESUMO
Over the recent years, several proteins that make up the mitochondrial calcium uniporter complex (MCUC) mediating Ca2+uptake into the mitochondrial matrix have been identified in mammals, including the channel-forming protein MCU. Although six MCU gene homologs are conserved in the model plant Arabidopsis (Arabidopsis thaliana) in which mitochondria can accumulate Ca2+, a functional characterization of plant MCU homologs has been lacking. Using electrophysiology, we show that one isoform, AtMCU1, gives rise to a Ca2+-permeable channel activity that can be observed even in the absence of accessory proteins implicated in the formation of the active mammalian channel. Furthermore, we provide direct evidence that AtMCU1 activity is sensitive to the mitochondrial calcium uniporter inhibitors Ruthenium Red and Gd3+, as well as to the Arabidopsis protein MICU, a regulatory MCUC component. AtMCU1 is prevalently expressed in roots, localizes to mitochondria, and its absence causes mild changes in Ca2+ dynamics as assessed by in vivo measurements in Arabidopsis root tips. Plants either lacking or overexpressing AtMCU1 display root mitochondria with altered ultrastructure and show shorter primary roots under restrictive growth conditions. In summary, our work adds evolutionary depth to the investigation of mitochondrial Ca2+ transport, indicates that AtMCU1, together with MICU as a regulator, represents a functional configuration of the plant mitochondrial Ca2+ uptake complex with differences to the mammalian MCUC, and identifies a new player of the intracellular Ca2+ regulation network in plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mutação , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismoRESUMO
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.