Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Phys Rev Lett ; 122(2): 025001, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720299

RESUMO

The propagation of fast electron currents in near solid-density media was investigated via proton probing. Fast currents were generated inside dielectric foams via irradiation with a short (∼0.6 ps) laser pulse focused at relativistic intensities (Iλ^{2}∼4×10^{19} W cm^{-2} µm^{2}). Proton probing provided a spatially and temporally resolved characterization of the evolution of the electromagnetic fields and of the associated net currents directly inside the target. The progressive growth of beam filamentation was temporally resolved and information on the divergence of the fast electron beam was obtained. Hybrid simulations of electron propagation in dense media indicate that resistive effects provide a major contribution to field generation and explain well the topology, magnitude, and temporal growth of the fields observed in the experiment. Estimations of the growth rates for different types of instabilities pinpoints the resistive instability as the most likely dominant mechanism of beam filamentation.

2.
Nature ; 481(7382): 480-3, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22281596

RESUMO

The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

3.
Phys Rev Lett ; 116(15): 155001, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127972

RESUMO

The interaction of a multipicosecond, kilojoule laser pulse with a surface of a solid target has been shown to produce electrons with energies far beyond the free-electron ponderomotive limit m_{e}c^{2}a_{0}^{2}/2. Particle-in-cell simulations indicate that an increase in the pulse duration from 1 to 10 ps leads to the formation of a low-density shelf (about 10% of the critical density). The shelf extends over 100 µm toward the vacuum side, with a nonstationary potential barrier forming in that area. Electrons reflected from the barrier gain superponderomotive energy from the potential. Some electrons experience an even greater energy gain due to ponderomotive acceleration when their "dephasing rate" R=γ-p_{x}/m_{e}c drops well below unity, thus increasing acceleration by a factor of 1/R. Both 1D and 2D simulations indicate that these mechanisms are responsible for the generation of extensive thermal distributions with T_{e}>10 MeV and a high-energy cutoff of hundreds of MeV.

4.
Phys Rev Lett ; 114(11): 115001, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839282

RESUMO

We present a hitherto unobserved facet of hydrodynamics, namely the generation of an ultrahigh frequency acoustic disturbance in the terahertz frequency range, whose origins are purely hydrodynamic in nature. The disturbance is caused by differential flow velocities down a density gradient in a plasma created by a 30 fs, 800 nm high-intensity laser (∼5×10(16) W/cm(2)). The picosecond scale observations enable us to capture these high frequency oscillations (1.9±0.6 THz) which are generated as a consequence of the rapid heating of the medium by the laser. Adoption of two complementary techniques, namely pump-probe reflectometry and pump-probe Doppler spectrometry provides unambiguous identification of this terahertz acoustic disturbance. Hydrodynamic simulations well reproduce the observations, offering insight into this process.

5.
Phys Rev Lett ; 113(18): 185001, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25396375

RESUMO

The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

6.
Phys Rev Lett ; 112(14): 145005, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765980

RESUMO

We have employed fast electrons produced by intense laser illumination to isochorically heat thermal electrons in solid density carbon to temperatures of ∼10,000 K. Using time-resolved x-ray diffraction, the temperature evolution of the lattice ions is obtained through the Debye-Waller effect, and this directly relates to the electron-ion equilibration rate. This is shown to be considerably lower than predicted from ideal plasma models. We attribute this to strong ion coupling screening the electron-ion interaction.

7.
Phys Rev Lett ; 111(6): 065002, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971580

RESUMO

It is shown that electrons with momenta exceeding the "free electron" limit of m(e)ca(0)(2)/2 can be produced when a laser pulse and a longitudinal electric field interact with an electron via a non-wake-field mechanism. The mechanism consists of two stages: the reduction of the electron dephasing rate γ - p(x)/m(e)c by an accelerating region of electric field and electron acceleration by the laser via the Lorentz force. This mechanism can, in principle, produce electrons that have longitudinal momenta that is a significant multiple of m(e)ca(0)(2)/2. 2D particle-in-cell simulations of a relatively simple laser-plasma interaction indicate that the generation of superponderomotive electrons is strongly affected by this "antidephasing" mechanism.

8.
Phys Rev Lett ; 111(9): 095001, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033041

RESUMO

Fast electron transport in Si, driven by ultraintense laser pulses, is investigated experimentally and via 3D hybrid particle-in-cell simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV.

9.
Appl Radiat Isot ; 202: 111044, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797447

RESUMO

Terbium-152 is one of four terbium radioisotopes that together form a potential theranostic toolbox for the personalised treatment of tumours. As 152 Tb decay by positron emission it can be utilised for diagnostics by positron emission tomography. For use in radiopharmaceuticals and for activity measurements by an activity calibrator a high radionuclide purity of the material and an accurate and precise knowledge of the half-life is required. Mass-separation and radiochemical purification provide a production route of high purity 152Tb. In the current work, two mass-separated samples from the CERN-ISOLDE facility have been assayed at the National Physical Laboratory to investigate the radionuclide purity. These samples have been used to perform four measurements of the half-life by three independent techniques: high-purity germanium gamma-ray spectrometry, ionisation chamber measurements and liquid scintillation counting. From the four measurement campaigns a half-life of 17.8784(95) h has been determined. The reported half-life shows a significant difference to the currently evaluated half-life (ζ-score = 3.77), with a relative difference of 2.2 % and an order of magnitude improvement in the precision. This work also shows that under controlled conditions the combination of mass-separation and radiochemical separation can provide high-purity 152Tb.

10.
Phys Rev Lett ; 108(12): 125004, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540591

RESUMO

A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

11.
Phys Rev Lett ; 108(16): 165006, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680729

RESUMO

In simulations of a 10 PW laser striking a solid, we demonstrate the possibility of producing a pure electron-positron plasma by the same processes as those thought to operate in high-energy astrophysical environments. A maximum positron density of 10(26) m(-3) can be achieved, 7 orders of magnitude greater than achieved in previous experiments. Additionally, 35% of the laser energy is converted to a burst of γ rays of intensity 10(22) W cm(-2), potentially the most intense γ-ray source available in the laboratory. This absorption results in a strong feedback between both pair and γ-ray production and classical plasma physics in the new "QED-plasma" regime.

12.
Phys Rev Lett ; 108(23): 235005, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003966

RESUMO

We demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated mega-ampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (10(18)-10(19)) W/cm2 was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.

13.
Phys Rev Lett ; 109(20): 205002, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215496

RESUMO

The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (~10(19) W/cm(2)) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

14.
Phys Rev Lett ; 108(22): 225002, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003606

RESUMO

We report experimental evidence for a Rayleigh-Taylor-like instability driven by radiation pressure of an ultraintense (10(21) W/cm(2)) laser pulse. The instability is witnessed by the highly modulated profile of the accelerated proton beam produced when the laser irradiates a 5 nm diamondlike carbon (90% C, 10% H) target. Clear anticorrelation between bubblelike modulations of the proton beam and transmitted laser profile further demonstrate the role of the radiation pressure in modulating the foil. Measurements of the modulation wavelength, and of the acceleration from Doppler-broadening of back-reflected light, agree quantitatively with particle-in-cell simulations performed for our experimental parameters and which confirm the existence of this instability.

15.
Phys Rev Lett ; 109(1): 015001, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23031109

RESUMO

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10∶1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion.

16.
Appl Radiat Isot ; 190: 110480, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209648

RESUMO

Terbium-155 has been identified for its potential for single-photon emission computed tomography (SPECT) in nuclear medicine. For activity measurements, an accurate and precise half-life of this radionuclide is required. However, the currently evaluated half-life of 5.32(6) d with a relative standard uncertainty of 1.1% determines the precision possible. Limited literature for the half-life measurements of this radionuclide is available and all reported investigations are prior to 1970. Further measurements are therefore needed to confirm the accuracy and improve the precision of the half-life for its use in the clinical setting. Two samples produced and mass separated at the CERN-MEDICIS facility have been measured at the National Physical Laboratory by two independent techniques: liquid scintillation counting and high-purity germanium gamma-ray spectrometry. A half-life of 5.2346(36) d has been determined from the weighted mean of the half-lives determined by the two techniques. The half-life reported in this work has shown a relative difference of 1.6% to the currently evaluated half-life and has vastly improved the precision.


Assuntos
Medicina Nuclear , Radioisótopos , Meia-Vida , Radioisótopos/análise , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Espectrometria gama
17.
Phys Rev Lett ; 106(18): 185004, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635098

RESUMO

The effect of lattice structure on the transport of energetic (MeV) electrons in solids irradiated by ultraintense laser pulses is investigated using various allotropes of carbon. We observe smooth electron transport in diamond, whereas beam filamentation is observed with less ordered forms of carbon. The highly ordered lattice structure of diamond is shown to result in a transient state of warm dense carbon with metalliclike conductivity, at temperatures of the order of 1-100 eV, leading to suppression of electron beam filamentation.

18.
J Exp Med ; 158(5): 1522-36, 1983 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-6355361

RESUMO

The macrophage-specific antigen F4/80 has been localized in mouse lymphoid and hematopoietic tissue and skin using immunoperoxidase staining. The antigen permits identification of early mononuclear phagocyte precursors in the bone marrow, and is present also on larger cells forming the center of hematopoietic islands and lining vascular sinuses. In thymus F4/80+ cells are numerous in both cortex and medulla and are particularly concentrated around the corticomedullary region. In spleen, lymph node, and gut-associated lymphoid areas the major F4/80+ populations are in the red pulp, the medulla and subcapsular sinus, and the adjacent lamina propria, respectively. F4/80+ cells are rarely seen in T-dependent areas of lymph nodes, spleen, or Peyer's patch, but are present in large numbers in these areas during bacillus Calmette-Guerin (BCG)-induced inflammation. Macrophage infiltration occurs also in lymph nodes from athymic nu/nu mice and is therefore T cell independent. The interdigitating cell of T-dependent areas is F4/80-, but the Langerhans cell of the epidermis of the skin, which bears some ultrastructural resemblance to the interdigitating cell, is F4/80+. We conclude that the two cell types are probably not related.


Assuntos
Antígenos de Superfície/análise , Sistema Hematopoético/citologia , Sistema Linfático/citologia , Fagócitos/imunologia , Animais , Granuloma/patologia , Histocitoquímica , Técnicas Imunoenzimáticas , Intestinos/citologia , Células de Langerhans/imunologia , Linfonodos/citologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Nus , Sistema Fagocitário Mononuclear/citologia , Baço/citologia , Timo/citologia
19.
Phys Rev Lett ; 105(10): 105002, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867525

RESUMO

We present high resolution measurements of the ultrafast temporal dynamics of the critical surface in moderately overdense, hot plasma by using two-color, pump-probe Doppler spectrometry. Our measurements clearly capture the initial inward motion of the plasma inside the critical surface of the pump laser which is followed by outward expansion. The measured instantaneous velocity and acceleration profiles are very well reproduced by a hybrid simulation that uses a 1D electromagnetic particle-in-cell simulation for the initial evolution and a hydrodynamics simulation for the later times. The combination of high temporal resolution and dynamic range in our measurements clearly provides quantitative unraveling of the dynamics in this important region, enabling this as a powerful technique to obtain ultrafast snapshots of plasma density and temperature profiles for providing benchmarks for simulations.

20.
Phys Rev Lett ; 105(8): 085001, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868103

RESUMO

Front and rear side x-ray emission from thin titanium foils irradiated by ultraintense laser pulses at intensities up to ≈5 × 10(19) W/cm2 was measured using a high-resolution imaging system. Significant differences in intensity, dimension, and spectrum between front and rear side emission intensity in the 3-12 keV photon energy range was found even for 5 µm thin Ti foils. Simulations and analysis of space-resolved spectra explain this behavior in terms of directional bremsstrahlung emission from fast electrons generated during the interaction process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA