RESUMO
The Ni/PPh3-catalyzed homocoupling of aryl chlorides in DMF using Zn as the stochiometric reducing agent is one of a general class of Ni-catalyzed processes, where the mechanism has been a matter of long-standing debate. This study re-evaluates prior conclusions and insights. NMR spectroscopy is used to identify [(PPh3)2NiII(Ar)Cl] as a key intermediate and to explore the indirect roles of using Zn as the reductant. The [ZnCl2] coproduct is responsible for several features, including a sequential transmetalation pathway involving [ArZnCl]. [ZnCl2] also abstracts halide from [(PPh3)2NiCl2] to generate [NiIICl(DMF)5]+[ZnCl3(DMF)]-, and in doing so, affects the NiII + Ni0 â 2 NiI speciation. [ZnCl2] thus acts as an accelerator and inhibitor, resulting in mildly sigmoidal reaction profiles. When the [ZnCl2] concentration becomes too high or the phosphine ligand concentration too low, catalysis stalls. Turnover is restored by the addition of further phosphine ligand, or chloride ion. In the presence of an exogenous chloride ion, turnover is rapid, again proceeding via [(PPh3)2NiII(Ar)Cl] but via dinuclear metathesis. The generation of [ZnCl3(DMF)]- results in mutually antagonistic effects between [ZnCl2] and [Cl]- such that turnover proceeds via one mechanism or the other, depending on which species is in excess. The intermediacy of [ArZnCl] suggests a solution to the long-standing anomaly that many other reductants were found to be much less effective than Zn in inducing turnover of Ni/PPh3 catalyzed aryl chloride homocoupling in DMF. The use of DMAc as a solvent in place of DMF inhibits stalling through the steric inhibition of mixed metalate generation.
RESUMO
This study was based on the data from the casefiles of the Institute of Forensic Medicine (IFM) in Kosovo, to analyse and interpret trauma observed on individuals recovered from a mass grave in Rudnica, Serbia. The intention was to determine if there is a pattern of trauma characteristic of this mass grave that informs about the manner of death and whether this is consistent with witness testimonies. The study considers the limitations of such analysis and interpretation, with special consideration of the completeness of the remains. The casefiles of 54 individuals recovered from the Rudnica mass grave from April to June 2014 were examined. A descriptive analysis was undertaken of the demographic profile of the sample, primary site of burial, completeness of the bodies, type and distribution of trauma, and the documented cause of death. All the individuals identified from the Rudnica mass grave were male aged from 14 to 96 years at time of death originating from four separate primary events with two known primary burial sites. Overall, 56% of the bodies were almost complete, 35% incomplete, and 9% complete. Discussion of the determination of completeness is included herein. The only type of trauma documented on the remains was gunshot wound trauma with the distribution of injuries concentrated on the trunk, followed by the limbs and head/neck regions. The cause of death was established in 56% of the cases. A pattern of trauma on the skeletal remains from the Rudnica mass grave was established based on the distribution and type of trauma documented from the dataset of each individual. These findings can be used as a basis for future studies in this field of research by taking a similar approach on larger samples and addressing the limitations encountered here.
Assuntos
Ferimentos por Arma de Fogo , Humanos , Masculino , Feminino , Restos Mortais , Kosovo , Sérvia/epidemiologia , SepultamentoRESUMO
Synchronized beating of cilia on multiciliated cells (MCCs) generates a directional flow of mucus across epithelia. This motility requires a "9 + 2" microtubule (MT) configuration in axonemes and the unidirectional array of basal bodies of cilia on the MCCs. However, it is not fully understood what components are needed for central MT-pair assembly as they are not continuous with basal bodies in contrast to the nine outer MT doublets. In this study, we discovered that a homozygous knockdown mouse model for MT minus-end regulator calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), Camsap3tm1a/tm1a , exhibited multiple phenotypes, some of which are typical of primary ciliary dyskinesia (PCD), a condition caused by motile cilia defects. Anatomical examination of Camsap3tm1a/tm1a mice revealed severe nasal airway blockage and abnormal ciliary morphologies in nasal MCCs. MCCs from different tissues exhibited defective synchronized beating and ineffective generation of directional flow likely underlying the PCD-like phenotypes. In normal mice, CAMSAP3 localized to the base of axonemes and at the basal bodies in MCCs. However, in Camsap3tm1a/tm1a , MCCs lacked CAMSAP3 at the ciliary base. Importantly, the central MT pairs were missing in the majority of cilia, and the polarity of the basal bodies was disorganized. These phenotypes were further confirmed in MCCs of Xenopus embryos when CAMSAP3 expression was knocked down by morpholino injection. Taken together, we identified CAMSAP3 as being important for the formation of central MT pairs, proper orientation of basal bodies, and synchronized beating of motile cilia.
Assuntos
Corpos Basais/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Axonema/metabolismo , Polaridade Celular , Transtornos da Motilidade Ciliar/genética , Células Epiteliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , XenopusRESUMO
Thousands of protein acyl modification sites have now been identified in vivo. However, at most sites the acylation stoichiometry is low, making functional enzyme-driven regulation in the majority of cases unlikely. As unmediated acylation can occur on the surface of proteins when acyl-CoA thioesters react with nucleophilic cysteine and lysine residues, slower nonenzymatic processes likely underlie most protein acylation. Here, we review how nonenzymatic acylation of nucleophilic lysine and cysteine residues occurs; the factors that enhance acylation at particular sites; and the strategies that have evolved to limit protein acylation. We conclude that protein acylation is an unavoidable consequence of the central role of reactive thioesters in metabolism. Finally, we propose a hypothesis for why low-stoichiometry protein acylation is selected against by evolution and how it might contribute to degenerative processes such as aging.
Assuntos
Acil Coenzima A/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Acil Coenzima A/química , Acilação , Animais , Cisteína/química , Humanos , Lisina/química , Proteínas/químicaRESUMO
Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in brown adipose tissue is defined by a substantial increase in levels of mitochondrial reactive oxygen species (ROS). Remarkably, this process supports in vivo thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole-body energy expenditure. We further establish that thermogenic ROS alter the redox status of cysteine thiols in brown adipose tissue to drive increased respiration, and that Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine-nucleotide-inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify mitochondrial ROS induction in brown adipose tissue as a mechanism that supports UCP1-dependent thermogenesis and whole-body energy expenditure, which opens the way to improved therapeutic strategies for combating metabolic disorders.
Assuntos
Cisteína/química , Metabolismo Energético , Canais Iônicos/química , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termogênese , Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Respiração Celular , Cisteína/genética , Cisteína/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Compostos de Sulfidrila/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1RESUMO
BACKGROUND: Mitochondria provide ATP through the process of oxidative phosphorylation, physically located in the inner mitochondrial membrane (IMM). The mitochondrial contact site and organising system (MICOS) complex is known as the 'mitoskeleton' due to its role in maintaining IMM architecture. APOO encodes MIC26, a component of MICOS, whose exact function in its maintenance or assembly has still not been completely elucidated. METHODS: We have studied a family in which the most affected subject presented progressive developmental delay, lactic acidosis, muscle weakness, hypotonia, weight loss, gastrointestinal and body temperature dysautonomia, repetitive infections, cognitive impairment and autistic behaviour. Other family members showed variable phenotype presentation. Whole exome sequencing was used to screen for pathological variants. Patient-derived skin fibroblasts were used to confirm the pathogenicity of the variant found in APOO. Knockout models in Drosophila melanogaster and Saccharomyces cerevisiae were employed to validate MIC26 involvement in MICOS assembly and mitochondrial function. RESULTS: A likely pathogenic c.350T>C transition was found in APOO predicting an I117T substitution in MIC26. The mutation caused impaired processing of the protein during import and faulty insertion into the IMM. This was associated with altered MICOS assembly and cristae junction disruption. The corresponding mutation in MIC26 or complete loss was associated with mitochondrial structural and functional deficiencies in yeast and D. melanogaster models. CONCLUSION: This is the first case of pathogenic mutation in APOO, causing altered MICOS assembly and neuromuscular impairment. MIC26 is involved in the assembly or stability of MICOS in humans, yeast and flies.
Assuntos
Apolipoproteínas/genética , Transtorno Autístico/genética , Disfunção Cognitiva/genética , Proteínas de Membrana/genética , Miopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Acidose Láctica/genética , Acidose Láctica/patologia , Animais , Transtorno Autístico/patologia , Disfunção Cognitiva/patologia , Drosophila melanogaster/genética , Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Miopatias Mitocondriais/epidemiologia , Miopatias Mitocondriais/patologia , Ligação Proteica , Saccharomyces cerevisiae/genéticaRESUMO
The ability of carboxylate groups to promote the direct functionalization of C-H bonds in organic compounds is unquestionably one of the most important discoveries in modern chemical synthesis. Extensive computational studies have indicated that this process proceeds through the deprotonation of a metal-coordinated C-H bond by the basic carboxylate, yet experimental validation of these predicted mechanistic pathways is limited and fraught with difficulty, mainly as rapid proton transfer is frequently obscured in ensemble measures in multistep reactions (i.e., a catalytic cycle consisting of several steps). In this paper, we describe a strategy to experimentally observe the microscopic reverse of the key C-H bond activation step underpinning functionalization processes (viz. M-C bond protonation). This has been achieved by utilizing photochemical activation of the thermally robust precursor [Mn(ppy)(CO)4] (ppy = metalated 2-phenylpyridine) in neat acetic acid. Time-resolved infrared spectroscopy on the picosecond-millisecond time scale allows direct observation of the states involved in the proton transfer from the acetic acid to the cyclometalated ligand, providing direct experimental evidence for the computationally predicted reaction pathways. The power of this approach to probe the mechanistic pathways in transition-metal-catalyzed reactions is demonstrated through experiments performed in toluene solution in the presence of PhC2H and HOAc. These allowed for the observation of sequential displacement of the metal-bound solvent by the alkyne, C-C bond formation though insertion in the Mn-C bond, and a slower protonation step by HOAc to generate the product of a Mn(I)-catalyzed C-H bond functionalization reaction.
RESUMO
Manganese-mediated borylation of aryl/heteroaryl diazonium salts emerges as a general and versatile synthetic methodology for the synthesis of the corresponding boronate esters. The reaction proved an ideal testing ground for delineating the Mn species responsible for the photochemical reaction processes, that is, involving either Mn radical or Mn cationic species, which is dependent on the presence of a suitably strong oxidant. Our findings are important for a plethora of processes employing Mn-containing carbonyl species as initiators and/or catalysts, which have considerable potential in synthetic applications.
RESUMO
Increasing numbers of diseases are associated with mitochondrial dysfunction. This is unsurprising given mitochondria have major roles in bioenergy generation, signalling, detoxification, apoptosis and biosynthesis. However, fundamental questions of mitochondrial biology remain, including: which nuclear genes encode mitochondrial proteins; how their expression varies with tissue; and which are associated with disease. But experiments to catalogue the mitochondrial proteome are incomplete and sometimes contradictory. This arises because the mitochondrial proteome has tissue- and stage-specific variability, plus differences among experimental techniques and localization evidence types used. This leads to limitations in each technique's coverage and inevitably conflicting results. To support identification of mitochondrial proteins, we developed MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/), a database combining evidence of mitochondrial localization with information from public resources. Here we report upgrades to MitoMiner, including its re-engineering to be gene-centric to enable easier sharing of evidence among orthologues and support next generation sequencing, plus new data sources, including expression in different tissues, information on phenotypes and diseases of genetic mutations and a new mitochondrial proteome catalogue. MitoMiner is a powerful platform to investigate mitochondrial localization by providing a unique combination of experimental sub-cellular localization datasets, tissue expression, predictions of mitochondrial targeting sequences, gene annotation and links to phenotype and disease.
Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Gerenciamento de Dados/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Internet , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fenótipo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodosRESUMO
Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.
RESUMO
We found that cyclometalated cyclopentadienyl iridium(III) complexes are uniquely efficient catalysts in homogeneous hydrogenation of oximes to hydroxylamine products. A stable iridium C,N-chelation is crucial, with alkoxy-substituted aryl ketimine ligands providing the best catalytic performance. Several Ir-complexes were mapped by X-ray crystal analysis in order to collect steric parameters that might guide a rational design of even more active catalysts. A broad range of oximes and oxime ethers were activated with stoichiometric amounts of methanesulfonic acid and reduced at room temperature, remarkably without cleavage of the fragile N-O bond. The exquisite functional group compatibility of our hydrogenation system was further demonstrated by additive tests. Experimental mechanistic investigations support an ionic hydrogenation platform, and suggest a role for the Brønsted acid beyond a proton source. Our studies provide deep understanding of this novel acidic hydrogenation and may facilitate its improvement and application to other challenging substrates.
RESUMO
NUBPL (Nucleotide-binding protein like) protein encodes a member of the Mrp/NBP35 ATP-binding proteins family, deemed to be involved in mammalian complex I (CI) assembly process. Exome sequencing of a patient presenting with infantile-onset hepatopathy, renal tubular acidosis, developmental delay, short stature, leukoencephalopathy with minimal cerebellar involvement and multiple OXPHOS deficiencies revealed the presence of two novel pathogenic compound heterozygous variants in NUBPL (p.Phe242Leu/p.Leu104Pro). We investigated patient's and control immortalised fibroblasts and demonstrated that both the peripheral and the membrane arms of complex I are undetectable in mutant NUBPL cells, resulting in virtually absent CI holocomplex and loss of enzyme activity. In addition, complex III stability was moderately affected as well. Lentiviral-mediated expression of the wild-type NUBPL cDNA rescued both CI and CIII assembly defects, confirming the pathogenicity of the variants. In conclusion, this is the first report describing a complex multisystemic disorder due to NUBPL defect. In addition, we confirmed the role of NUBPL in Complex I assembly associated with secondary effect on Complex III stability and we demonstrated a defect of mtDNA-related translation which suggests a potential additional role of NUBPL in mtDNA expression.
Assuntos
Variação Genética , Heterozigoto , Leucoencefalopatias/genética , Proteínas Mitocondriais/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , DNA Mitocondrial , Feminino , Humanos , Lactente , Recém-Nascido , Leucoencefalopatias/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/patologia , Mutação , Adulto JovemRESUMO
Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.
Assuntos
Isquemia/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Ácido Succínico/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/metabolismo , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Fumaratos/metabolismo , Isquemia/enzimologia , Malatos/metabolismo , Masculino , Metabolômica , Camundongos , Mitocôndrias/enzimologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/metabolismo , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Traumatismo por Reperfusão/enzimologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/metabolismo , Succinato Desidrogenase/metabolismoRESUMO
Manganese(I) carbonyl-catalyzed C-H bond functionalization of 2-phenylpyridine and related compounds containing suitable metal directing groups has recently emerged as a potentially useful synthetic methodology for the introduction of various groups to the ortho position of a benzene ring. Preliminary mechanistic studies have highlighted that these reactions could proceed via numerous different species and steps and, moreover, potentially different catalytic cycles. The primary requirement for typically 10 mol % catalyst, oftentimes the ubiquitous precursor catalyst, BrMn(CO)5, has not yet been questioned nor significantly improved upon, suggesting catalytic deactivation may be a serious issue to be understood and resolved. Several critical questions are further raised by the species responsible for providing a source of protons in the protonation of vinyl-manganese(I) carbonyl intermediates. In this study, using a combination of experimental and theoretical methods, we provide comprehensive answers to the key mechanistic questions concerning the Mn(I) carbonyl-catalyzed C-H bond functionalization of 2-phenylpyridine and related compounds. Our results enable the explanation of alkyne substrate dependencies, i.e., internal versus terminal alkynes. We found that there are different catalyst activation pathways for BrMn(CO)5, e.g., terminal alkynes lead to the generation of MnI-acetylide species, whose formation is reminiscent of CuI-acetylide species proposed to be of critical importance in Sonogashira cross-coupling processes. We have unequivocally established that alkyne, 2-phenylpyridine, and water can facilitate hydrogen transfer in the protonation step, leading to the liberation of protonated alkene products.
RESUMO
The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme.
Assuntos
Cardiolipinas/metabolismo , Lisina/metabolismo , Simulação de Dinâmica Molecular , ATPases Translocadoras de Prótons/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cardiolipinas/química , Bovinos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisina/química , Lisina/genética , Metilação , Ligação Proteica , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de AminoácidosRESUMO
Cardiolipin in eukaryotes is found in the mitochondrial inner membrane, where it interacts with membrane proteins and, although not essential, is necessary for the optimal activity of a number of proteins. One of them is the mitochondrial ADP/ATP carrier, which imports ADP into the mitochondrion and exports ATP. In the crystal structures, cardiolipin is bound to three equivalent sites of the ADP/ATP carrier, but its role is unresolved. Conservation of residues at these cardiolipin binding sites across other members of the mitochondrial carrier superfamily indicates cardiolipin binding is likely to be important for the function of all mitochondrial carriers. Multiscale simulations were performed in a cardiolipin-containing membrane to investigate the dynamics of cardiolipin around the yeast and bovine ADP/ATP carriers in a lipid bilayer and the properties of the cardiolipin-binding sites. In coarse-grain simulations, cardiolipin molecules bound to the carriers for longer periods of time than phosphatidylcholine and phosphatidylethanolamine lipids-with timescales in the tens of microseconds. Three long-lived cardiolipin binding sites overlapped with those in the crystal structures of the carriers. Other shorter-lived cardiolipin interaction sites were identified in both membrane leaflets. However, the timescales of the interactions were of the same order as phosphatidylcholine and phosphatidylethanolamine, suggesting that these sites are not specific for cardiolipin binding. The calculation of lipid binding times and the overlap of the cardiolipin binding sites between the structures and simulations demonstrate the potential of multiscale simulations to investigate the dynamics and behavior of lipids interacting with membrane proteins.
Assuntos
Cardiolipinas/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cardiolipinas/química , Cardiolipinas/genética , Bovinos , Sequência Conservada/genética , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiaeRESUMO
PURPOSE: To understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease. METHODS: We identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons. RESULTS: The patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis. CONCLUSION: Mitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.
Assuntos
Adipatos/metabolismo , DNA Mitocondrial/genética , Transportadores de Ácidos Dicarboxílicos/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Atrofia Muscular Espinal/genética , Adipatos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , DNA Mitocondrial/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Fibroblastos/efeitos dos fármacos , Homozigoto , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Neurônios Motores/efeitos dos fármacos , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Mutação , Ácidos Pipecólicos/metabolismo , Ácido Quinolínico/metabolismoRESUMO
Biallelic mutations in NDUFAF6 have been identified as responsible for cases of autosomal recessive Leigh syndrome associated with mitochondrial complex I deficiency. Here we report two siblings and two unrelated subjects with Leigh syndrome, in which we found the same compound heterozygous missense (c.532G>C:p.A178P) and deep intronic (c.420+784C>T) variants in NDUFAF6. We demonstrated that the identified intronic variant creates an alternative splice site, leading to the production of an aberrant transcript. A detailed analysis of whole-exome sequencing data together with the functional validation based on mRNA analysis may reveal pathogenic variants even in non-exonic regions.
Assuntos
Sequenciamento do Exoma , Heterozigoto , Íntrons , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Mutação de Sentido Incorreto , RNA Mensageiro/genética , Alelos , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Haplótipos , Humanos , Lactente , Linfócitos/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Proteínas Mitocondriais , Linhagem , FenótipoRESUMO
BACKGROUND: Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband. METHODS: A next-generation sequencing (NGS) approach was carried out on an Italian male who presented in childhood with ptosis, severe muscle weakness and exercise intolerance. His disease was slowly progressive, with partial recovery between episodes. Patient's specimens and yeast models were investigated. RESULTS: Histochemical and biochemical analyses on muscle biopsy showed multiple defects affecting mitochondrial respiratory chain complexes. We identified a single heterozygous mutation p.Gly96Val in ISCU, which was absent in DNA from his parents indicating a possible de novo dominant effect in the patient. Patient fibroblasts showed normal levels of ISCU protein and a few variably affected Fe-S cluster-dependent enzymes. Yeast studies confirmed both pathogenicity and dominance of the identified missense mutation. CONCLUSION: We describe the first heterozygous dominant mutation in ISCU which results in a phenotype reminiscent of the recessive disease previously reported.
Assuntos
Genes Dominantes , Proteínas Ferro-Enxofre/genética , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Mutação , Sequência de Aminoácidos , Biomarcadores , Biópsia , Biologia Computacional/métodos , Eletroencefalografia , Eletromiografia , Fibroblastos/metabolismo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Ferro-Enxofre/química , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Músculo Esquelético/patologia , Linhagem , Fenótipo , Análise de Sequência de DNA , Relação Estrutura-Atividade , Adulto JovemRESUMO
Mitochondrial proteins remain the subject of intense research interest due to their implication in an increasing number of different conditions including mitochondrial and metabolic disease, cancer, and neuromuscular degenerative and age-related disorders. However, the mitochondrial proteome has yet to be accurately and comprehensively defined, despite many studies. To support mitochondrial research, we developed MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk), a freely accessible mitochondrial proteomics database. MitoMiner integrates different types of subcellular localisation evidence with protein information from public resources, and so provides a comprehensive central resource for data on mitochondrial protein localisation. Here we report important updates to the database including the addition of subcellular immunofluorescent staining results from the Human Protein Atlas, computational predictions of mitochondrial targeting sequences, and additional large-scale mass-spectrometry and GFP tagging data sets. This evidence is shared across the 12 species in MitoMiner (now including Schizosaccharomyces pombe) by homology mapping. MitoMiner provides multiple ways of querying the data including simple text searches, predefined queries and custom queries created using the interactive QueryBuilder. For remote programmatic access, API's are available for several programming languages. This combination of data and flexible querying makes MitoMiner a unique platform to investigate mitochondrial proteins, with application in mitochondrial research and prioritising candidate mitochondrial disease genes.