Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell ; 185(24): 4488-4506.e20, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36318922

RESUMO

When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.


Assuntos
Proteínas Serina-Treonina Quinases , Fosforilação , Tamanho Celular
2.
Annu Rev Physiol ; 85: 383-406, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228173

RESUMO

The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.


Assuntos
Cloretos , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Rim/metabolismo
3.
PLoS Genet ; 19(10): e1010975, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819975

RESUMO

WNK (With no Lysine [K]) kinases have critical roles in the maintenance of ion homeostasis and the regulation of cell volume. Their overactivation leads to pseudohypoaldosteronism type II (Gordon syndrome) characterized by hyperkalemia and high blood pressure. More recently, WNK family members have been shown to be required for the development of the nervous system in mice, zebrafish, and flies, and the cardiovascular system of mice and fish. Furthermore, human WNK2 and Drosophila Wnk modulate canonical Wnt signaling. In addition to a well-conserved kinase domain, animal WNKs have a large, poorly conserved C-terminal domain whose function has been largely mysterious. In most but not all cases, WNKs bind and activate downstream kinases OSR1/SPAK, which in turn regulate the activity of various ion transporters and channels. Here, we show that Drosophila Wnk regulates Wnt signaling and cell size during the development of the wing in a manner dependent on Fray, the fly homolog of OSR1/SPAK. We show that the only canonical RF(X)V/I motif of Wnk, thought to be essential for WNK interactions with OSR1/SPAK, is required to interact with Fray in vitro. However, this motif is unexpectedly dispensable for Fray-dependent Wnk functions in vivo during fly development and fluid secretion in the Malpighian (renal) tubules. In contrast, a structure function analysis of Wnk revealed that the less-conserved C-terminus of Wnk, that recently has been shown to promote phase transitions in cell culture, is required for viability in vivo. Our data thus provide novel insights into unexpected in vivo roles of specific WNK domains.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Drosophila/metabolismo , Peixe-Zebra/metabolismo , Homeostase , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Physiology (Bethesda) ; 39(3): 0, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411570

RESUMO

Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.


Assuntos
Geradores de Padrão Central , Proteínas de Drosophila , Animais , Drosophila melanogaster/fisiologia , Cloretos , Neurônios/fisiologia , Ritmo Circadiano/fisiologia
5.
BMC Genomics ; 23(1): 399, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614386

RESUMO

BACKGROUND: Gene regulation is critical for proper cellular function. Next-generation sequencing technology has revealed the presence of regulatory networks that regulate gene expression and essential cellular functions. Studies investigating the epigenome have begun to uncover the complex mechanisms regulating transcription. Assay for transposase-accessible chromatin by sequencing (ATAC-seq) is quickly becoming the assay of choice for many epigenomic investigations. However, whether intervention-mediated changes in accessible chromatin determined by ATAC-seq can be harnessed to generate intervention-inducible reporter constructs has not been systematically assayed. RESULTS: We used the insulin signaling pathway as a model to investigate chromatin regions and gene expression changes using ATAC- and RNA-seq in insulin-treated Drosophila S2 cells. We found correlations between ATAC- and RNA-seq data, especially when stratifying differentially-accessible chromatin regions by annotated feature type. In particular, our data demonstrated a weak but significant correlation between chromatin regions annotated to enhancers (1-2 kb from the transcription start site) and downstream gene expression. We cloned candidate enhancer regions upstream of luciferase and demonstrate insulin-inducibility of several of these reporters. CONCLUSIONS: Insulin-induced chromatin accessibility determined by ATAC-seq reveals enhancer regions that drive insulin-inducible reporter gene expression.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Animais , Cromatina/genética , Drosophila/genética , Sequenciamento de Nucleotídeos em Larga Escala , Insulina/farmacologia , Transposases/genética
6.
J Am Soc Nephrol ; 32(7): 1666-1681, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33952630

RESUMO

BACKGROUND: Identification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients. METHODS: A multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray. RESULTS: These approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%. CONCLUSIONS: Conventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.

7.
BMC Biol ; 19(1): 31, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593351

RESUMO

BACKGROUND: Proper regulation of feeding is important for an organism's well-being and survival and involves a motivational component directing the search for food. Dissecting the molecular and neural mechanisms of motivated feeding behavior requires assays that allow quantification of both motivation and food intake. Measurements of motivated behavior usually involve assessing physical effort or overcoming an aversive stimulus. Food intake in Drosophila can be determined in a number of ways, including by measuring the time a fly's proboscis interacts with a food source associated with an electrical current in the fly liquid-food interaction counter (FLIC). Here, we show that electrical current flowing through flies during this interaction is aversive, and we describe a modified assay to measure motivation in Drosophila. RESULTS: Food intake is reduced during the interaction with FLIC when the electrical current is turned on, which provides a confounding variable in studies of motivated behavior. Based on the FLIC, we engineer a novel assay, the fly liquid-food electroshock assay (FLEA), which allows for current adjustments for each feeding well. Using the FLEA, we show that both external incentives and internal motivational state can serve as drivers for flies to overcome higher current (electric shock) to obtain superior food. Unlike similar assays in which bitterness is the aversive stimulus for the fly to overcome, we show that current perception is not discounted as flies become more food-deprived. Finally, we use genetically manipulated flies to show that neuropeptide F, an orthologue of mammalian NPY previously implicated in regulation of feeding motivation, is required for sensory processing of electrical current. CONCLUSION: The FLEA is therefore a novel assay to accurately measure incentive motivation in Drosophila. Using the FLEA, we also show that neuropeptide F is required for proper perception or processing of an electroshock, a novel function for this neuropeptide involved in the processing of external and internal stimuli.


Assuntos
Drosophila melanogaster/fisiologia , Eletrochoque , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Alimentar/fisiologia , Alimentos/classificação , Masculino , Percepção Gustatória/fisiologia
8.
Am J Physiol Cell Physiol ; 320(5): C703-C721, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439774

RESUMO

With no lysine (K) (WNK) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low- or high-potassium diet. We, therefore, investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ∼13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1, and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, Ste20-related proline/alanine-rich kinase (SPAK). The greatest sensitivity of WNK4 to potassium occurred in the range of 80-180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Túbulos de Malpighi/enzimologia , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Linhagem Celular , Cloretos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Concentração de Íons de Hidrogênio , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Especificidade por Substrato
9.
J Neurosci ; 39(45): 8877-8884, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31558618

RESUMO

Alcohol use is highly prevalent in the United States and across the world, and every year millions of people suffer from alcohol use disorders (AUDs). Although the genetic contribution to developing AUDs is estimated to be 50-60%, many of the underlying molecular mechanisms remain unclear. Previous studies from our laboratory revealed that Drosophila melanogaster lacking RhoGAP18B and Ras Suppressor 1 (Rsu1) display reduced sensitivity to ethanol-induced sedation. Both Rsu1 and RhoGAP18B are negative regulators of the small Rho-family GTPase, Rac1, a modulator of actin dynamics. Here we investigate the role of Rac1 and its downstream target, the actin-severing protein cofilin, in alcohol consumption preference. We show that these two regulators of actin dynamics can alter male experience-dependent alcohol preference in a bidirectional manner: expressing either activated Rac1 or dominant-negative cofilin in the mushroom bodies (MBs) abolishes experience-dependent alcohol preference. Conversely, dominant-negative Rac1 or activated cofilin MB expression lead to faster acquisition of alcohol preference. Our data show that Rac1 and cofilin activity are key to determining the rate of acquisition of alcohol preference, revealing a critical role of actin dynamics regulation in the development of voluntary self-administration in DrosophilaSIGNIFICANCE STATEMENT The risks for developing an alcohol use disorder (AUD) are strongly determined by genetic factors. Understanding the genes and molecular mechanisms that contribute to that risk is therefore a necessary first step for the development of targeted therapeutic intervention. Here we show that regulators of actin cytoskeleton dynamics can bidirectionally determine the acquisition rate of alcohol self-administration, highlighting this process as a key mechanism contributing to the risk of AUD development.


Assuntos
Citoesqueleto de Actina/metabolismo , Alcoolismo/genética , Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Corpos Pedunculados/metabolismo , Proteínas rac de Ligação ao GTP/genética , Fatores de Despolimerização de Actina/metabolismo , Alcoolismo/metabolismo , Animais , Condicionamento Clássico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Proteínas dos Microfilamentos/metabolismo , Corpos Pedunculados/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo
10.
Am J Physiol Cell Physiol ; 318(3): C675-C694, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913700

RESUMO

Septate junctions (SJs) are occluding cell-cell junctions that have roles in paracellular permeability and barrier function in the epithelia of invertebrates. Arthropods have two types of SJs, pleated SJs and smooth SJs (sSJs). In Drosophila melanogaster, sSJs are found in the midgut and Malpighian tubules, but the functions of sSJs and their protein components in the tubule epithelium are unknown. Here we examined the role of the previously identified integral sSJ component, Mesh, in the Malpighian tubule. We genetically manipulated mesh specifically in the principal cells of the tubule at different life stages. Tubules of flies with developmental mesh knockdown revealed defects in epithelial architecture, sSJ molecular and structural organization, and lack of urine production in basal and kinin-stimulated conditions, resulting in edema and early adult lethality. Knockdown of mesh during adulthood did not disrupt tubule epithelial and sSJ integrity but decreased the transepithelial potential, diminished transepithelial fluid and ion transport, and decreased paracellular permeability to 4-kDa dextran. Drosophila kinin decreased transepithelial potential and increased chloride permeability, and it stimulated fluid secretion in both control and adult mesh knockdown tubules but had no effect on 4-kDa dextran flux. Together, these data indicate roles for Mesh in the developmental maturation of the Drosophila Malpighian tubule and in ion and macromolecular transport in the adult tubule.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Proteínas de Drosophila/deficiência , Epitélio/metabolismo , Epitélio/ultraestrutura , Túbulos de Malpighi/metabolismo , Túbulos de Malpighi/ultraestrutura , Proteínas de Membrana/deficiência , Morfogênese/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Transporte de Íons/fisiologia , Proteínas de Membrana/genética
11.
Am J Physiol Cell Physiol ; 318(6): C1107-C1122, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267718

RESUMO

Tetraspanin-2A (Tsp2A) is an integral membrane protein of smooth septate junctions in Drosophila melanogaster. To elucidate its structural and functional roles in Malpighian tubules, we used the c42-GAL4/UAS system to selectively knock down Tsp2A in principal cells of the tubule. Tsp2A localizes to smooth septate junctions (sSJ) in Malpighian tubules in a complex shared with partner proteins Snakeskin (Ssk), Mesh, and Discs large (Dlg). Knockdown of Tsp2A led to the intracellular retention of Tsp2A, Ssk, Mesh, and Dlg, gaps and widening spaces in remaining sSJ, and tumorous and cystic tubules. Elevated protein levels together with diminished V-type H+-ATPase activity in Tsp2A knockdown tubules are consistent with cell proliferation and reduced transport activity. Indeed, Malpighian tubules isolated from Tsp2A knockdown flies failed to secrete fluid in vitro. The absence of significant transepithelial voltages and resistances manifests an extremely leaky epithelium that allows secreted solutes and water to leak back to the peritubular side. The tubular failure to excrete fluid leads to extracellular volume expansion in the fly and to death within the first week of adult life. Expression of the c42-GAL4 driver begins in Malpighian tubules in the late embryo and progresses upstream to distal tubules in third instar larvae, which can explain why larvae survive Tsp2A knockdown and adults do not. Uncontrolled cell proliferation upon Tsp2A knockdown confirms the role of Tsp2A as tumor suppressor in addition to its role in sSJ structure and transepithelial transport.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Túbulos de Malpighi/metabolismo , Tetraspaninas/metabolismo , Junções Íntimas/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Impedância Elétrica , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Larva/ultraestrutura , Túbulos de Malpighi/embriologia , Túbulos de Malpighi/ultraestrutura , Via Secretória , Transdução de Sinais , Tetraspaninas/genética , Junções Íntimas/genética , Junções Íntimas/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
Am J Physiol Renal Physiol ; 316(3): F481-F487, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30623723

RESUMO

The inner medullary collecting duct (IMCD) produces very high levels of endothelin-1 (ET-1) that acts as an autocrine inhibitor of IMCD Na+ and water reabsorption. Recent studies suggest that IMCD ET-1 production is enhanced by extracellular hypertonicity as can occur during high salt intake. Although NFAT5 has been implicated in the IMCD ET-1 hypertonicity response, no studies in any cell type have identified NFAT5 as a transcriptional regulator of the EDN1 gene; the current study examined this using a mouse IMCD cell line (IMCD3). Media hypertonicity increased IMCD3 ET-1 mRNA in a dose- and time-dependent manner associated with increased NFAT5 nuclear localization. Knockdown of NFAT5 using small-interfering RNA or by CRISPR/Cas9-mediated targeting of exon 4 of the NFAT5 gene reduced the ET-1 hypertonicity response. Chromatin immunoprecipitation using an NFAT5 antibody pulled down ET-1 promoter regions containing NFAT5 consensus binding sequences. Transfected ET-1 promoter reporter constructs revealed maximal hypertonicity-induced reporter activity in the proximal 1-kb region; mutation of the two NFAT5 consensus-binding sites in this region abolished hypertonicity-induced reporter activity. The 1-kb ET-1 promoter-reporter construct lost hypertonicity responsiveness when transfected in CRISPR/Cas9-induced NFAT5-deficient cells. In summary, these findings represent the first description that NFAT5 is a direct transcriptional regulator of the EDN1 gene in IMCD cells and point to a potentially important mechanism by which body Na+ homeostasis is maintained.


Assuntos
Endotelina-1/metabolismo , Regulação da Expressão Gênica , Túbulos Renais Coletores/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endotelina-1/genética , Camundongos , Fatores de Transcrição NFATC/genética , Regiões Promotoras Genéticas , RNA Interferente Pequeno
13.
Am J Hum Genet ; 99(3): 636-646, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588450

RESUMO

We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.


Assuntos
Etnicidade/genética , Estudo de Associação Genômica Ampla , Rim/fisiopatologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Alelos , Animais , Desoxirribonuclease I/metabolismo , Diabetes Mellitus/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Feminino , Taxa de Filtração Glomerular/genética , Humanos , Rim/patologia , Desequilíbrio de Ligação , Masculino , Fatores de Transcrição NFATC/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Proteínas RGS/genética , Grupos Raciais/genética , Tolerância ao Sal/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética
14.
Curr Opin Nephrol Hypertens ; 28(4): 360-367, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30865168

RESUMO

PURPOSE OF REVIEW: This review focuses on the role of intracellular chloride in regulating transepithelial ion transport in the distal convoluted tubule (DCT) in response to perturbations in plasma potassium homeostasis. RECENT FINDINGS: Low dietary potassium increases the phosphorylation and activity of the sodium chloride cotransporter (NCC) in the DCT, and vice versa, affecting sodium-dependent potassium secretion in the downstream aldosterone-sensitive distal nephron. In cells, NCC phosphorylation is increased by lowering of intracellular chloride, via activation of the chloride-sensitive with no lysine (WNK)-SPAK/OSR1 (Ste20-related proline/alanine-rich kinase/oxidative stress response) kinase cascade. In-vivo studies have demonstrated pathway activation in the kidney in response to low dietary potassium. A possible mechanism is lowering of DCT intracellular chloride in response to low potassium because of parallel basolateral potassium and chloride channels. Recent studies support a role for these channels in the response of NCC to varying potassium. Studies examining chloride-insensitive WNK mutants, in the Drosophila renal tubule and in the mouse, lend further support to a role for chloride in regulating WNK activity and transepithelial ion transport. Caveats, alternatives, and future directions are also discussed. SUMMARY: Chloride sensing by WNK kinase provides a mechanism to allow coupling of extracellular potassium with NCC phosphorylation and activity to maintain potassium homeostasis.


Assuntos
Cloretos/fisiologia , Túbulos Renais Distais/metabolismo , Néfrons/metabolismo , Animais , Transporte Biológico , Homeostase , Humanos , Camundongos , Fosforilação , Potássio/metabolismo , Simportadores de Cloreto de Sódio/fisiologia
15.
Curr Opin Nephrol Hypertens ; 28(5): 455-464, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31268918

RESUMO

PURPOSE OF REVIEW: Studies of the genetic model organism, Drosophila melanogaster, have unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, the Drosophila renal epithelium, is described here, including tools available to study transport; conserved transporters, channels, and the signaling pathways regulating them; and fly models of kidney stone disease. RECENT FINDINGS: Tools to measure Malpighian tubule transport continue to advance, including use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated an RNA-sequencing-based atlas of tissue-specific gene expression, with resulting insights into Malpighian tubule gene expression of transporters and channels. Advances have been made in understanding the molecular physiology of the With No Lysine kinase-Ste20-related proline/alanine rich kinase/oxidative stress response kinase cascade that regulates epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant metabolite in decreasing stone burden. SUMMARY: Study of the Drosophila Malpighian tubule affords opportunities to better characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian renal physiology.


Assuntos
Drosophila melanogaster/fisiologia , Túbulos de Malpighi/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Transporte de Íons/fisiologia , Cálculos Renais/etiologia , Nefropatias/metabolismo , Transdução de Sinais/fisiologia
16.
J Am Soc Nephrol ; 29(5): 1449-1461, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29602832

RESUMO

Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cloretos/metabolismo , Proteínas de Drosophila/metabolismo , Túbulos de Malpighi/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Epitélio/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Transporte de Íons/genética , Fosforilação , Transdução de Sinais
17.
Am J Physiol Renal Physiol ; 315(4): F903-F907, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29923766

RESUMO

WNK [with no lysine (K)] kinases regulate renal epithelial ion transport to maintain homeostasis of electrolyte concentrations, extracellular volume, and blood pressure. The SLC12 cation-chloride cotransporters, including the sodium-potassium-2-chloride (NKCC) and sodium chloride cotransporters (NCC), are targets of WNK regulation via the intermediary kinases SPAK (Ste20-related proline/alanine-rich kinase) and OSR1 (oxidative stress response). The pathway is activated by low dietary potassium intake, resulting in increased phosphorylation and activity of NCC. Chloride regulates WNK kinases in vitro by binding to the active site and inhibiting autophosphorylation and has been proposed to modulate WNK activity in the distal convoluted tubule in response to low dietary potassium. WNK-SPAK/OSR1 regulation of NKCC-dependent ion transport is evolutionarily ancient, and it occurs in the Drosophila Malpighian (renal) tubule. Here, we review recent studies from the Drosophila tubule demonstrating cooperative roles for chloride and the scaffold protein Mo25 (mouse protein-25, also known as calcium-binding protein-39) in the regulation of WNK-SPAK/OSR1 signaling in a transporting renal epithelium. Insights gained from this genetically manipulable and physiologically accessible epithelium shed light on molecular mechanisms of regulation of the WNK-SPAK/OSR1 pathway, which is important in human health and disease.


Assuntos
Epitélio/metabolismo , Túbulos Renais/metabolismo , Transdução de Sinais/fisiologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Humanos , Fosforilação , Simportadores de Cloreto de Sódio/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(30): E4085-93, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170296

RESUMO

Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Proteínas de Drosophila/fisiologia , Fatores de Transcrição/fisiologia , Actinas/metabolismo , Adolescente , Adulto , Animais , Encéfalo/metabolismo , Moléculas de Adesão Celular/metabolismo , Criança , Estudos de Coortes , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Etanol/química , Feminino , GTP Fosfo-Hidrolases/metabolismo , Genes Dominantes , Humanos , Integrinas/metabolismo , Masculino , Mutação , Neurônios/metabolismo , Polimorfismo Genético , Inquéritos e Questionários , Fatores de Transcrição/genética
19.
Alcohol Clin Exp Res ; 41(12): 2015-2024, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940624

RESUMO

BACKGROUND: Long-lasting transcriptional changes underlie a number of adaptations that contribute to alcohol use disorders (AUD). Chromatin remodeling, including histone methylation, can confer distinct, long-lasting transcriptional changes, and histone methylases are known to play a role in the development of addiction. Conversely, little is known about the relevance of Jumonji (JmjC) domain-containing demethylases in AUDs. We systematically surveyed the alcohol-induced phenotypes of null mutations in all 13 Drosophila JmjC genes. METHODS: We used a collection of JmjC mutants, the majority of which we generated by homologous recombination, and assayed them in the Booze-o-mat to determine their naïve sensitivity to sedation and their tolerance (change in sensitivity upon repeat exposure). Mutants with reproducible phenotypes had their phenotypes rescued with tagged genomic transgenes, and/or phenocopied by nervous system-specific knockdown using RNA interference (RNAi). RESULTS: Four of the 13 JmjC genes (KDM3, lid, NO66, and HSPBAP1) showed reproducible ethanol (EtOH) sensitivity phenotypes. Some of the phenotypes were observed across doses, for example, the enhanced EtOH sensitivity of KDM3KO and NO66KO , but others were dose dependent, such as the reduced EtOH sensitivity of HSPBAP1KO , or the enhanced EtOH tolerance of NO66KO . These phenotypes were rescued by their respective genomic transgenes in KDM3KO and NO66KO mutants. While we were unable to rescue lidk mutants, knockdown of lid in the nervous system recapitulated the lidk phenotype, as was observed for KDM3KO and NO66KO RNAi-mediated knockdown. CONCLUSIONS: Our study reveals that the Drosophila JmjC-domain histone demethylases Lid, KDM3, NO66, and HSPBAP1 are required for normal EtOH-induced sedation and tolerance. Three of 3 tested of those 4 JmjC genes are required in the nervous system for normal alcohol-induced behavioral responses, suggesting that this gene family is an intriguing avenue for future research.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Etanol/farmacologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/enzimologia , Animais , Animais Geneticamente Modificados , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Tolerância a Medicamentos/genética , Técnicas de Silenciamento de Genes , Hipnóticos e Sedativos/farmacologia , Histona Desmetilases com o Domínio Jumonji/genética , Mutação com Perda de Função , Reparo Gênico Alvo-Dirigido
20.
Pediatr Nephrol ; 32(7): 1109-1121, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27194424

RESUMO

The kidney plays an essential role in maintaining homeostasis of ion concentrations in the blood. Because the concentration gradient of potassium across the cell membrane is a key determinant of the membrane potential of cells, even small deviations in serum potassium level from the normal setpoint can lead to severe muscle dysfunction, resulting in respiratory failure and cardiac arrest. Less severe hypo- and hyperkalemia are also associated with morbidity and mortality across various patient populations. In addition, deficiencies in potassium intake have been associated with hypertension and adverse cardiovascular and renal outcomes, likely due in part to the interrelated handling of sodium and potassium by the kidney. Here, data on the beneficial effects of potassium on blood pressure and cardiovascular and renal outcomes will be reviewed, along with the physiological basis for these effects. In some patient populations, however, potassium excess is deleterious. Risk factors for the development of hyperkalemia will be reviewed, as well as the risks and benefits of existing and emerging therapies for hyperkalemia.


Assuntos
Membrana Celular/fisiologia , Insuficiência Cardíaca/sangue , Hiperpotassemia/fisiopatologia , Hipopotassemia/fisiopatologia , Potássio/fisiologia , Insuficiência Respiratória/sangue , Aldosterona/metabolismo , Resinas de Troca de Cátion/uso terapêutico , Criança , Insuficiência Cardíaca/fisiopatologia , Homeostase , Humanos , Hiperpotassemia/sangue , Hiperpotassemia/tratamento farmacológico , Hipertensão/sangue , Hipertensão/fisiopatologia , Hipopotassemia/sangue , Rim/fisiologia , Potenciais da Membrana , Polímeros/uso terapêutico , Potássio/sangue , Potássio na Dieta/efeitos adversos , Proteínas Serina-Treonina Quinases/metabolismo , Recomendações Nutricionais , Eliminação Renal , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Insuficiência Respiratória/fisiopatologia , Fatores de Risco , Transdução de Sinais , Silicatos/uso terapêutico , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA