Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ecol Appl ; 33(2): e2751, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36151883

RESUMO

Sea ice loss is fundamentally altering the Arctic marine environment. Yet there is a paucity of data on the adaptability of food webs to ecosystem change, including predator-prey interactions. Polar bears (Ursus maritimus) are an important subsistence resource for Indigenous people and an apex predator that relies entirely on the under-ice food web to meet its energy needs. In this study, we assessed whether polar bears maintained dietary energy density by prey switching in response to spatiotemporal variation in prey availability. We compared the macronutrient composition of diets inferred from stable carbon and nitrogen isotopes in polar bear guard hair (primarily representing summer/fall diet) during periods when bears had low and high survival (2004-2016), between bears that summered on land versus pack ice, and between bears occupying different regions of the Alaskan and Canadian Beaufort Sea. Polar bears consumed diets with lower energy density during periods of low survival, suggesting that concurrent increased dietary proportions of beluga whales (Delphinapterus leucas) did not offset reduced proportions of ringed seals (Pusa hispida). Diets with the lowest energy density and proportions from ringed seal blubber were consumed by bears in the western Beaufort Sea (Alaska) during a period when polar bear abundance declined. Intake required to meet energy requirements of an average free-ranging adult female polar bear was 2.1 kg/day on diets consumed during years with high survival but rose to 3.0 kg/day when survival was low. Although bears that summered onshore in the Alaskan Beaufort Sea had higher-fat diets than bears that summered on the pack ice, access to the remains of subsistence-harvested bowhead whales (Balaena mysticetus) contributed little to improving diet energy density. Because most bears in this region remain with the sea ice year round, prey switching and consumption of whale carcasses onshore appear insufficient to augment diets when availability of their primary prey, ringed seals, is reduced. Our results show that a strong predator-prey relationship between polar bears and ringed seals continues in the Beaufort Sea. The method of estimating dietary blubber using predator hair, demonstrated here, provides a new metric to monitor predator-prey relationships that affect individual health and population demographics.


Assuntos
Caniformia , Focas Verdadeiras , Ursidae , Animais , Feminino , Ursidae/fisiologia , Ecossistema , Canadá , Dieta , Isótopos de Nitrogênio , Dinâmica Populacional , Camada de Gelo , Regiões Árticas
2.
Zoo Biol ; 41(2): 166-175, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34793606

RESUMO

Although polar bears (Ursus maritimus) and brown bears (U. arctos) have been exhibited in zoological gardens for centuries, little is known about their nutritional needs. Multiple recent studies on both wild and captive polar bears and brown bears have found that they voluntarily select dietary macronutrient proportions resulting in much lower dietary protein and higher fat or digestible carbohydrate concentrations than are currently fed in most zoos. These lower protein concentrations selected by both species maximized growth rates and efficiencies of energy utilization in brown bears and may play a role in reducing kidney, liver, and cardiovascular diseases in both species. Therefore, we propose the need for the development of new dietary regimens for both species in managed care that better reflect their macronutrient needs. We developed a new kibble that is higher in fat and lower in protein than typical diets that have been fed in managed care, has a fatty acid profile more consistent with wild bear diets, and has been readily consumed by both brown bears and polar bears. The kibble can be fed as the sole diet or as part of more complex diets with additional fruits, meats, or vegetables. Because many nutritional deficiencies and related diseases can take months or years to appear, we urge caution and continued long-term monitoring of bears and their diets to ensure their optimal health.


Assuntos
Ursidae , Animais , Animais Selvagens , Animais de Zoológico , Dieta/veterinária
3.
Glob Chang Biol ; 27(12): 2684-2701, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33644944

RESUMO

Polar bears (Ursus maritimus) are experiencing loss of sea ice habitats used to access their marine mammal prey. Simultaneously, ocean warming is changing ecosystems that support marine mammal populations. The interactive effects of sea ice and prey are not well understood yet may explain spatial-temporal variation in the response of polar bears to sea ice loss. Here, we examined the potential combined effects of sea ice, seal body condition, and atmospheric circulation patterns on the body condition, recruitment, diet, and feeding probability of 469 polar bears captured in the Chukchi Sea, 2008-2017. The body condition of ringed seals (Pusa hispida), the primary prey of females and subadults, was related to dietary proportions of ringed seal, feeding probability, and the body condition of females and cubs. In contrast, adult males consumed more bearded seals (Erignathus barbatus) and exhibited better condition when bearded seal body condition was higher. The litter size, number of yearlings per adult female, and the condition of dependent young were higher following winters characterized by low Arctic Oscillation conditions, consistent with a growing number of studies. Body condition, recruitment, and feeding probability were either not associated or negatively associated with sea ice conditions, suggesting that, unlike some subpopulations, Chukchi Sea bears are not currently limited by sea ice availability. However, spring sea ice cover declined 2% per year during our study reaching levels not previously observed in the satellite record and resulting in the loss of polar bear hunting and seal pupping habitat. Our study suggests that the status of ice seal populations is likely an important factor that can either compound or mitigate the response of polar bears to sea ice loss over the short term. In the long term, neither polar bears nor their prey are likely robust to limitless loss of their sea ice habitat.


Assuntos
Caniformia , Focas Verdadeiras , Ursidae , Animais , Regiões Árticas , Ecossistema , Feminino , Camada de Gelo , Masculino
4.
J Exp Biol ; 224(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34746957

RESUMO

Walruses rely on sea-ice to efficiently forage and rest between diving bouts while maintaining proximity to prime foraging habitat. Recent declines in summer sea ice have resulted in walruses hauling out on land where they have to travel farther to access productive benthic habitat while potentially increasing energetic costs. Despite the need to better understand the impact of sea ice loss on energy expenditure, knowledge about metabolic demands of specific behaviours in walruses is scarce. In the present study, 3 adult female Pacific walruses (Odobenus rosmarus divergens) housed in professional care participated in flow-through respirometry trials to measure metabolic rates while floating inactive at the water surface during a minimum of 5 min, during a 180 s stationary dive, and while swimming ∼90 m horizontally underwater. Metabolic rates during stationary dives (3.82±0.56 l O2 min-1) were lower than those measured at the water surface (4.64±1.04 l O2 min-1), which did not differ from rates measured during subsurface swimming (4.91±0.77 l O2 min-1). Thus, neither stationary diving nor subsurface swimming resulted in metabolic rates above those exhibited by walruses at the water surface. These results suggest that walruses minimize their energetic investment during underwater behaviours as reported for other marine mammals. Although environmental factors experienced by free-ranging walruses (e.g. winds or currents) likely affect metabolic rates, our results provide important information for understanding how behavioural changes affect energetic costs and can be used to improve bioenergetics models aimed at predicting the metabolic consequences of climate change on walruses.


Assuntos
Mergulho , Morsas , Animais , Mudança Climática , Feminino , Camada de Gelo , Natação
5.
Ecol Appl ; 31(8): e02461, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582601

RESUMO

Climate change threatens global biodiversity. Many species vulnerable to climate change are important to humans for nutritional, cultural, and economic reasons. Polar bears Ursus maritimus are threatened by sea-ice loss and represent a subsistence resource for Indigenous people. We applied a novel population modeling-management framework that is based on species life history and accounts for habitat loss to evaluate subsistence harvest for the Chukchi Sea (CS) polar bear subpopulation. Harvest strategies followed a state-dependent approach under which new data were used to update the harvest on a predetermined management interval. We found that a harvest strategy with a starting total harvest rate of 2.7% (˜85 bears/yr at current abundance), a 2:1 male-to-female ratio, and a 10-yr management interval would likely maintain subpopulation abundance above maximum net productivity level for the next 35 yr (approximately three polar bear generations), our primary criterion for sustainability. Plausible bounds on starting total harvest rate were 1.7-3.9%, where the range reflects uncertainty due to sampling variation, environmental variation, model selection, and differing levels of risk tolerance. The risk of undesired demographic outcomes (e.g., overharvest) was positively related to harvest rate, management interval, and projected declines in environmental carrying capacity; and negatively related to precision in population data. Results reflect several lines of evidence that the CS subpopulation has been productive in recent years, although it is uncertain how long this will last as sea-ice loss continues. Our methods provide a template for balancing trade-offs among protection, use, research investment, and other factors. Demographic risk assessment and state-dependent management will become increasingly important for harvested species, like polar bears, that exhibit spatiotemporal variation in their response to climate change.


Assuntos
Mudança Climática , Ursidae , Animais , Regiões Árticas , Demografia , Feminino , Camada de Gelo , Masculino , Medição de Risco , Ursidae/fisiologia
6.
Glob Chang Biol ; 24(1): 410-423, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994242

RESUMO

The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983-1999 and 2000-2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting upper trophic-level productivity in these marine ecosystems.


Assuntos
Caniformia , Mudança Climática , Cadeia Alimentar , Ursidae , Animais , Regiões Árticas , Dieta , Camada de Gelo , Dinâmica Populacional , Reprodução , Estações do Ano , Ursidae/sangue
7.
Oecologia ; 184(1): 87-99, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28247129

RESUMO

Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species' distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50-75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.


Assuntos
Mudança Climática , Ursidae , Animais , Regiões Árticas , Ecossistema , Camada de Gelo , Estações do Ano
8.
Proc Biol Sci ; 283(1836)2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27534959

RESUMO

Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.


Assuntos
Mudança Climática , Ecossistema , Camada de Gelo , Comportamento Predatório , Ursidae , Animais , Dinâmica Populacional , Estações do Ano
9.
Proc Natl Acad Sci U S A ; 109(36): E2382-90, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22826254

RESUMO

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Assuntos
Adaptação Biológica/genética , Mudança Climática/história , Evolução Molecular , Genética Populacional , Genoma/genética , Ursidae/genética , Animais , Regiões Árticas , Sequência de Bases , Marcadores Genéticos/genética , História Antiga , Dados de Sequência Molecular , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA , Especificidade da Espécie
10.
Glob Chang Biol ; 20(1): 76-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23913506

RESUMO

Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.


Assuntos
Mudança Climática , Comportamento Alimentar , Reprodução , Ursidae/fisiologia , Animais , Regiões Árticas , Tamanho Corporal , Dieta , Ecossistema , Feminino , Camada de Gelo , Masculino , Oceanos e Mares
11.
J Mammal ; 105(3): 490-501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812929

RESUMO

Among polar bears (Ursus maritimus), only parturient females den for extended periods, emerging from maternal dens in spring after having substantially depleted their energy reserves during a fast that can exceed 8 months. Although den emergence coincides with a period of increasing prey availability, polar bears typically do not depart immediately to hunt, but instead remain at the den for up to a month. This delay suggests that there are likely adaptive advantages to remaining at the den between emergence and departure, but the influence of the timing and duration of this post-emergence period on cub survival has not been evaluated previously. We used temperature and location data from 70 denning bears collared within the Southern Beaufort Sea and Chukchi Sea subpopulations to estimate the phenology of the post-emergence period. We evaluated the influence of various spatial and temporal features on duration of the post-emergence period and evaluated the potential influence of post-emergence duration on litter survival early in the spring following denning. For dens that likely contained viable cubs at emergence (n = 56), mean den emergence occurred on 16 March (SE = 1.4 days) and mean departure on 24 March (SE = 1.6 days), with dates typically occurring later in the Chukchi Sea relative to Southern Beaufort Sea and on land relative to sea ice. Mean duration of the post-emergence period was 7.9 days (SE = 1.4) for bears that were observed with cubs later in the spring, which was over 4 times longer than duration of those observed without cubs (1.9 days). Litter survival in the spring following denning (n = 31 dens) increased from 0.5 to 0.9 when duration of the post-emergence period increased by ~4 days and other variables were held at mean values. Our limited sample size and inability to verify cub presence at emergence suggests that future research is merited to improve our understanding of this relationship. Nonetheless, our results highlight the importance of the post-emergence period in contributing to reproductive success and can assist managers in developing conservation and mitigation strategies in denning areas, which will be increasingly important as human activities expand in the Arctic.

12.
Nat Commun ; 15(1): 947, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351211

RESUMO

Declining Arctic sea ice is increasing polar bear land use. Polar bears on land are thought to minimize activity to conserve energy. Here, we measure the daily energy expenditure (DEE), diet, behavior, movement, and body composition changes of 20 different polar bears on land over 19-23 days from August to September (2019-2022) in Manitoba, Canada. Polar bears on land exhibited a 5.2-fold range in DEE and 19-fold range in activity, from hibernation-like DEEs to levels approaching active bears on the sea ice, including three individuals that made energetically demanding swims totaling 54-175 km. Bears consumed berries, vegetation, birds, bones, antlers, seal, and beluga. Beyond compensating for elevated DEE, there was little benefit from terrestrial foraging toward prolonging the predicted time to starvation, as 19 of 20 bears lost mass (0.4-1.7 kg•day-1). Although polar bears on land exhibit remarkable behavioral plasticity, our findings reinforce the risk of starvation, particularly in subadults, with forecasted increases in the onshore period.


Assuntos
Inanição , Ursidae , Humanos , Animais , Mudança Climática , Canadá , Dieta , Camada de Gelo , Regiões Árticas , Ecossistema
13.
Mov Ecol ; 10(1): 25, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606849

RESUMO

BACKGROUND: The spatial ecology of individuals often varies within a population or species. Identifying how individuals in different classes interact with their environment can lead to a better understanding of population responses to human activities and environmental change and improve population estimates. Most inferences about polar bear (Ursus maritimus) spatial ecology are based on data from adult females due to morphological constraints on applying satellite radio collars to other classes of bears. Recent studies, however, have provided limited movement data for adult males and sub-adults of both sexes using ear-mounted and glue-on tags. We evaluated class-specific movements and step selection patterns for polar bears in the Chukchi Sea subpopulation during spring. METHODS: We developed hierarchical Bayesian models to evaluate polar bear movement (i.e., step length and directional persistence) and step selection at the scale of 4-day step lengths. We assessed differences in movement and step selection parameters among the three classes of polar bears (i.e., adult males, sub-adults, and adult females without cubs-of-the-year). RESULTS: Adult males had larger step lengths and less directed movements than adult females. Sub-adult movement parameters did not differ from the other classes but point estimates were most similar to adult females. We did not detect differences among polar bear classes in step selection parameters and parameter estimates were consistent with previous studies. CONCLUSIONS: Our findings support the use of estimated step selection patterns from adult females as a proxy for other classes of polar bears during spring. Conversely, movement analyses indicated that using data from adult females as a proxy for the movements of adult males is likely inappropriate. We recommend that researchers consider whether it is valid to extend inference derived from adult female movements to other classes, based on the questions being asked and the spatial and temporal scope of the data. Because our data were specific to spring, these findings highlight the need to evaluate differences in movement and step selection during other periods of the year, for which data from ear-mounted and glue-on tags are currently lacking.

14.
J Comp Physiol B ; 192(2): 379-395, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687352

RESUMO

Accurate information on diet composition is central to understanding and conserving carnivore populations. Quantitative fatty acid signature analysis (QFASA) has emerged as a powerful tool for estimating the diets of predators, but ambiguities remain about the timeframe of QFASA estimates and the need to account for species-specific patterns of metabolism. We conducted a series of feeding experiments with four juvenile male brown bears (Ursus arctos) to (1) track the timing of changes in adipose tissue composition and QFASA diet estimates in response to a change in diet and (2) quantify the relationship between consumer and diet FA composition (i.e., determine "calibration coefficients"). Bears were fed three compositionally distinct diets for 90-120 days each. Two marine-based diets were intended to approximate the lipid content and composition of the wild diet of polar bears (U. maritimus). Bear adipose tissue composition changed quickly in the direction of the diet and showed evidence of stabilization after 60 days. During hibernation, FA profiles were initially stable but diet estimates after 10 weeks were sensitive to calibration coefficients. Calibration coefficients derived from the marine-based diets were broadly similar to each other and to published values from marine-fed mink (Mustela vison), which have been used as a model for free-ranging polar bears. For growing bears on a high-fat diet, the temporal window for QFASA estimates was 30-90 days. Although our results reinforce the importance of accurate calibration, the similarities across taxa and diets suggest it may be feasible to develop a generalized QFASA approach for mammalian carnivores.


Assuntos
Hibernação , Ursidae , Animais , Calibragem , Dieta/veterinária , Jejum , Ácidos Graxos/metabolismo , Masculino , Ursidae/fisiologia
15.
Sci Rep ; 11(1): 15309, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321600

RESUMO

Studies of predator feeding ecology commonly focus on energy intake. However, captive predators have been documented to selectively feed to optimize macronutrient intake. As many apex predators experience environmental changes that affect prey availability, limitations on selective feeding can affect energetics and health. We estimated the protein:fat ratio of diets consumed by wild polar bears using a novel isotope-based approach, measured protein:fat ratios selected by zoo polar bears offered dietary choice and examined potential energetic and health consequences of overconsuming protein. Dietary protein levels selected by wild and zoo polar bears were low and similar to selection observed in omnivorous brown bears, which reduced energy intake requirements by 70% compared with lean meat diets. Higher-protein diets fed to zoo polar bears during normal care were concurrent with high rates of mortality from kidney disease and liver cancer. Our results suggest that polar bears have low protein requirements and that limitations on selective consumption of marine mammal blubber consequent to climate change could meaningfully increase their energetic costs. Although bear protein requirements appear lower than those of other carnivores, the energetic and health consequences of protein overconsumption identified in this study have the potential to affect a wide range of taxa.


Assuntos
Proteínas Alimentares/farmacologia , Hiperfagia/fisiopatologia , Comportamento Predatório/fisiologia , Ursidae/fisiologia , Tecido Adiposo , Ração Animal , Animais , Animais Selvagens , Animais de Zoológico , Isótopos de Carbono/análise , Causas de Morte , Mudança Climática , Gorduras na Dieta/farmacologia , Metabolismo Energético , Feminino , Preferências Alimentares , Cabelo/química , Cardiopatias/mortalidade , Cardiopatias/veterinária , Nefropatias/sangue , Nefropatias/mortalidade , Nefropatias/veterinária , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/veterinária , Masculino , Músculos , Isótopos de Nitrogênio/análise , Salmão , Focas Verdadeiras , Baleias
16.
Ecol Appl ; 20(3): 768-82, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20437962

RESUMO

Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long-term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long-term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.


Assuntos
Tamanho Corporal , Camada de Gelo , Reprodução , Crânio/crescimento & desenvolvimento , Ursidae/crescimento & desenvolvimento , Animais
17.
J Biol Rhythms ; 35(2): 180-194, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975640

RESUMO

Life in the Arctic presents organisms with multiple challenges, including extreme photic conditions, cold temperatures, and annual loss and daily movement of sea ice. Polar bears (Ursus maritimus) evolved under these unique conditions, where they rely on ice to hunt their main prey, seals. However, very little is known about the dynamics of their daily and seasonal activity patterns. For many organisms, activity is synchronized (entrained) to the earth's day/night cycle, in part via an endogenous (circadian) timekeeping mechanism. The present study used collar-mounted accelerometer and global positioning system data from 122 female polar bears in the Chukchi and Southern Beaufort Seas collected over an 8-year period to characterize activity patterns over the calendar year and to determine if circadian rhythms are expressed under the constant conditions found in the Arctic. We reveal that the majority of polar bears (80%) exhibited rhythmic activity for the duration of their recordings. Collectively within the rhythmic bear cohort, circadian rhythms were detected during periods of constant daylight (June-August; 24.40 ± 1.39 h, mean ± SD) and constant darkness (23.89 ± 1.72 h). Exclusive of denning periods (November-April), the time of peak activity remained relatively stable (acrophases: ~1200-1400 h) for most of the year, suggesting either entrainment or masking. However, activity patterns shifted during the spring feeding and seal pupping season, as evidenced by an acrophase inversion to ~2400 h in April, followed by highly variable timing of activity across bears in May. Intriguingly, despite the dynamic environmental photoperiodic conditions, unpredictable daily timing of prey availability, and high between-animal variability, the average duration of activity (alpha) remained stable (11.2 ± 2.9 h) for most of the year. Together, these results reveal a high degree of behavioral plasticity in polar bears while also retaining circadian rhythmicity. Whether this degree of plasticity will benefit polar bears faced with a loss of sea ice remains to be determined.


Assuntos
Comportamento Animal , Relógios Circadianos , Ritmo Circadiano , Fotoperíodo , Ursidae/fisiologia , Animais , Regiões Árticas , Ecossistema , Feminino , Sistemas de Informação Geográfica , Reprodução , Estações do Ano
18.
PLoS One ; 15(8): e0237444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813753

RESUMO

Animal structural body size and condition are often measured to evaluate individual health, identify responses to environmental change and food availability, and relate food availability to effects on reproduction and survival. A variety of condition metrics have been developed but relationships between these metrics and vital rates are rarely validated. Identifying an optimal approach to estimate the body condition of polar bears is needed to improve monitoring of their response to decline in sea ice habitat. Therefore, we examined relationships between several commonly used condition indices (CI), body mass, and size with female reproductive success and cub survival among polar bears (Ursus maritimus) measured in two subpopulations over three decades. To improve measurement and application of morphometrics and CIs, we also examined whether CIs are independent of age and structural size-an important assumption for monitoring temporal trends-and factors affecting measurement precision and accuracy. Maternal CIs and mass measured the fall prior to denning were related to cub production. Similarly, maternal CIs, mass, and length were related to the mass of cubs or yearlings that accompanied her. However, maternal body mass, but not CIs, measured in the spring was related to cub production and only maternal mass and length were related to the probability of cub survival. These results suggest that CIs may not be better indicators of fitness than body mass in part because CIs remove variation associated with body size that is important in affecting fitness. Further, CIs exhibited variable relationships with age for growing bears and were lower for longer bears despite body length being related to cub survival and female reproductive success. These results are consistent with findings from other species indicating that body mass is a useful metric to link environmental conditions and population dynamics.


Assuntos
Tamanho Corporal , Ursidae/fisiologia , Animais , Regiões Árticas , Cruzamento , Ecossistema , Feminino , Masculino , Oceanos e Mares , Reprodução/fisiologia , Estações do Ano , Ursidae/crescimento & desenvolvimento
19.
Sci Rep ; 8(1): 16780, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429493

RESUMO

Large carnivores are imperiled globally, and characteristics making them vulnerable to extinction (e.g., low densities and expansive ranges) also make it difficult to estimate demographic parameters needed for management. Here we develop an integrated population model to analyze capture-recapture, radiotelemetry, and count data for the Chukchi Sea subpopulation of polar bears (Ursus maritimus), 2008-2016. Our model addressed several challenges in capture-recapture studies for polar bears by including a multievent structure reflecting location and life history states, while accommodating state uncertainty. Female breeding probability was 0.83 (95% credible interval [CRI] = 0.71-0.90), with litter sizes of 2.18 (95% CRI = 1.71-2.82) for age-zero and 1.61 (95% CRI = 1.46-1.80) for age-one cubs. Total adult survival was 0.90 (95% CRI = 0.86-0.92) for females and 0.89 (95% CRI = 0.83-0.93) for males. Spring on-ice densities west of Alaska were 0.0030 bears/km2 (95% CRI = 0.0016-0.0060), similar to 1980s-era density estimates although methodological differences complicate comparison. Abundance of the Chukchi Sea subpopulation, derived by extrapolating density from the study area using a spatially-explicit habitat metric, was 2,937 bears (95% CRI = 1,552-5,944). Our findings are consistent with other lines of evidence suggesting the Chukchi Sea subpopulation has been productive in recent years, although it is uncertain how long this will continue given sea-ice loss due to climate change.


Assuntos
Reprodução/fisiologia , Taxa de Sobrevida/tendências , Ursidae , Alaska , Animais , Regiões Árticas , Cruzamento/normas , Mudança Climática , Ecossistema , Feminino , Camada de Gelo , Masculino , Dinâmica Populacional/estatística & dados numéricos , Dinâmica Populacional/tendências , Incerteza , Ursidae/fisiologia
20.
Ecol Evol ; 7(16): 6103-6113, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28861216

RESUMO

Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA