Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400492, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074969

RESUMO

Drug repurposing is defined as the use of approved therapeutic drugs for indications different from those for which they were originally designed. Repositioning diminishes both the time and cost for drug development by omitting the discovery stage, the analysis of absorption, distribution, metabolism, and excretion routes, as well as the studies of the biochemical and physiological effects of a new compound. Besides, drug repurposing takes advantage of the increased bioinformatics knowledge and availability of big data biology. There are many examples of drugs with repurposed indications evaluated in in vitro studies, and in pharmacological, preclinical, or retrospective clinical analyses. Here, we briefly review some of the experimental strategies and technical advances that may improve translational research in cardiovascular diseases. We also describe exhaustive research from basic science to clinical studies that culminated in the final approval of new drugs and provide examples of successful drug repurposing in the field of cardiology.

2.
Arch Biochem Biophys ; 743: 109667, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327962

RESUMO

The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oxigênio , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Metano/metabolismo , Citocromos/metabolismo , Acetatos , Lactatos/metabolismo
3.
J Cell Biochem ; 123(4): 701-718, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931340

RESUMO

Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.


Assuntos
Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Acetilação , Histonas , Cinética
4.
Arch Biochem Biophys ; 669: 39-49, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128085

RESUMO

To enhance our understanding of the control of archaeal carbon central metabolism, a detailed analysis of the regulation mechanisms of both fructose1,6-bisphosphatase (FruBPase) and ADP-phosphofructokinase-1 (ADP-PFK1) was carried out in the methanogen Methanosarcina acetivorans. No correlations were found among the transcript levels of the MA_1152 and MA_3563 (frubpase type II and pfk1) genes, the FruBPase and ADP-PFK1 activities, and their protein contents. The kinetics of the recombinant FruBPase II and ADP-PFK1 were hyperbolic and showed simple mixed-type inhibition by AMP and ATP, respectively. Under physiological metabolite concentrations, the FruBPase II and ADP-PFK1 activities were strongly modulated by their inhibitors. To assess whether these enzymes were also regulated by a phosphorylation/dephosphorylation process, the recombinant enzymes and cytosolic-enriched fractions were incubated in the presence of commercial protein phosphatase or protein kinase. De-phosphorylation of ADP-PFK1 slightly decreased its activity (i.e. Vmax) and did not change its kinetic parameters and oligomeric state. Thus, the data indicated a predominant metabolic regulation of both FruBPase and ADP-PFK1 activities by adenine nucleotides and suggested high degrees of control on the respective pathway fluxes.


Assuntos
Proteínas Arqueais/metabolismo , Frutose-Bifosfatase/metabolismo , Methanosarcina/metabolismo , Fosfofrutoquinase-1/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Galinhas , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Frutosefosfatos/metabolismo , Genes Arqueais , Cinética , Methanosarcina/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/isolamento & purificação , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional
5.
J Bacteriol ; 199(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799324

RESUMO

The multisubunit cation/proton antiporter 3 family, also called Mrp, is widely distributed in all three phylogenetic domains (Eukarya, Bacteria, and Archaea). Investigations have focused on Mrp complexes from the domain Bacteria to the exclusion of Archaea, with a consensus emerging that all seven subunits are required for Na+/H+ antiport activity. The MrpA subunit from the MrpABCDEFG Na+/H+ antiporter complex of the archaeon Methanosarcina acetivorans was produced in antiporter-deficient Escherichia coli strains EP432 and KNabc and biochemically characterized to determine the role of MrpA in the complex. Both strains containing MrpA grew in the presence of up to 500 mM NaCl and pH values up to 11.0 with no added NaCl. Everted vesicles from the strains containing MrpA were able to generate a NADH-dependent pH gradient (ΔpH), which was abated by the addition of monovalent cations. The apparent Km values for Na+ and Li+ were similar and ranged from 31 to 63 mM, whereas activity was too low to determine the apparent Km for K+ Optimum activity was obtained between pH 7.0 and 8.0. Homology molecular modeling identified two half-closed symmetry-related ion translocation channels that are linked, forming a continuous path from the cytoplasm to the periplasm, analogous to the NuoL subunit of complex I. Bioinformatics analyses revealed genes encoding homologs of MrpABCDEFG in metabolically diverse methane-producing species. Overall, the results advance the biochemical, evolutionary, and physiological understanding of Mrp complexes that extends to the domain Archaea IMPORTANCE: The work is the first reported characterization of an Mrp complex from the domain Archaea, specifically methanogens, for which Mrp is important for acetotrophic growth. The results show that the MrpA subunit is essential for antiport activity and, importantly, that not all seven subunits are required, which challenges current dogma for Mrp complexes from the domain Bacteria A mechanism is proposed in which an MrpAD subcomplex catalyzes Na+/H+ antiport independent of an MrpBCEFG subcomplex, although the activity of the former is modulated by the latter. Properties of MrpA strengthen proposals that the Mrp complex is of ancient origin and that subunits were recruited to evolve the ancestral complex I. Finally, bioinformatics analyses indicate that Mrp complexes function in diverse methanogenic pathways.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Methanosarcina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Arqueais/genética , Transporte Biológico , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lítio/metabolismo , Methanosarcina/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética
6.
Biochem Cell Biol ; 95(5): 556-562, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28595020

RESUMO

In this work, we studied the protective effects of tamoxifen (TAM) on disulfiram (Dis)-induced mitochondrial membrane insult. The results indicate that TAM circumvents the inner membrane leakiness manifested as Ca2+ release, mitochondrial swelling, and collapse of the transmembrane electric gradient. Furthermore, it was found that TAM prevents inactivation of the mitochondrial enzyme aconitase and detachment of cytochrome c from the inner membrane. Interestingly, TAM also inhibited Dis-promoted generation of hydrogen peroxide. Given that TAM is an antioxidant molecule, it is plausible that its protection may be due to the inhibition of Dis-induced oxidative stress.


Assuntos
Dissulfiram/efeitos adversos , Membranas Mitocondriais/efeitos dos fármacos , Tamoxifeno/farmacologia , Animais , Cálcio/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
7.
Cell Biol Int ; 41(12): 1356-1366, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884894

RESUMO

Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca2+ . This nucleotide also protected mitochondria from Hg2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine.


Assuntos
Citidina Difosfato Colina/farmacologia , Rim/efeitos dos fármacos , Mercúrio/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Creatina/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Proteins ; 83(1): 105-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25354921

RESUMO

The modulation of aldehyde dehydrogenase (ALDH) activity has been suggested as a promising option for the prevention or treatment of many diseases. To date, only few activating compounds of ALDHs have been described. In this regard, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide has been used to protect the heart against ischemia/reperfusion damage. In the search for new modulating ALDH molecules, the binding capability of different compounds to the active site of human aldehyde dehydrogenase class 1A1 (ALDH1A1) was analyzed by molecular docking, and their ability to modulate the activity of the enzyme was tested. Surprisingly, tamoxifen, an estrogen receptor antagonist used for breast cancer treatment, increased the activity and decreased the Km for NAD(+) by about twofold in ALDH1A1. No drug effect on human ALDH2 or ALDH3A1 was attained, showing that tamoxifen was specific for ALDH1A1. Protection against thermal denaturation and competition with daidzin suggested that tamoxifen binds to the aldehyde site of ALDH1A1, resembling the interaction of N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide with ALDH2. Further kinetic analysis indicated that tamoxifen activation may be related to an increase in the Kd for NADH, favoring a more rapid release of the coenzyme, which is the rate-limiting step of the reaction for this isozyme. Therefore, tamoxifen might improve the antioxidant response, which is compromised in some diseases.


Assuntos
Aldeído Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Ativadores de Enzimas/farmacologia , Tamoxifeno/farmacologia , Família Aldeído Desidrogenase 1 , Antineoplásicos/química , Domínio Catalítico , Ativadores de Enzimas/química , Humanos , Cinética , Simulação de Acoplamento Molecular , NAD/metabolismo , Proteínas Recombinantes/metabolismo , Retinal Desidrogenase , Tamoxifeno/química , Termodinâmica
9.
Artigo em Inglês | MEDLINE | ID: mdl-38629372

RESUMO

BACKGROUND: Human cervix adenocarcinoma (CC) caused by papillomavirus is the third most common cancer among female malignant tumors. Bioactive compounds such as cyclodipeptides (CDPs) possess cytotoxic effects in human cervical cancer HeLa cells mainly by blocking the PI3K/Akt/mTOR pathway and subsequently inducing gene expression by countless transcription regulators. However, the upstream elements of signaling pathways have not been well studied. METHODS: To elucidate the cytotoxic and antiproliferative responses of the HeLa cell line to CDPs by a transcriptomic analysis previously carried out, we identified by immunochemical analyses, differential expression of genes related to the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/MET) receptors. Furthermore, molecular docking was carried out to evaluate the interactions of CDPs with the EGF and MET substrate binding sites. RESULTS: Immunochemical and molecular docking analyses suggest that the HGF/MET receptor participation in CDPs cytotoxic effect was independent of the protein expression levels. However, protein modulation of downstream Met-targets occurred due to the inhibition of phosphorylation of the HGF/MET receptor. Results suggest that the antiproliferative and cytotoxicity of CDPs in HeLa cells involve the HGF/MET receptor upstream of PI3K/Akt/mTOR pathway; assays with the human breast cancer MCF-7 and MDA-MB-231cell lines supported the finding. CONCLUSION: Data provide new insights into the molecular mechanisms involved in CDPs cytotoxicity and antiproliferative effects, suggesting that the signal transduction mechanism may be related to the inhibition of the phosphorylation of the EGF/MET receptor at the level of substrate binding site by an inhibition mechanism similar to that of Gefitinib and foretinib anti-neoplastic drugs.

10.
Proteins ; 81(8): 1330-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23444097

RESUMO

Aldehyde dehydrogenases (ALDHs) couple the oxidation of aldehydes to the reduction of NAD(P)(+) . These enzymes have gained importance as they have been related to the detoxification of aldehydes generated in several diseases involving oxidative stress. It has been determined that tetrameric ALDHs work only with two of their four active sites (half-of-the-sites reactivity), but the mechanistic reason for this feature remains unknown. In this study, tetrameric human aldehyde dehydrogenase class 1A1 (ALDH1A1) was dimerized to study the correlation of the oligomeric structure with the presence of half-of-the-sites reactivity. Stable dimers from ALDH1A1 were generated by combining the mutation of two residues of the dimer-dimer interface in the tetramer (previously shown to render a low-active and unstable enzyme) and the fusion of green fluorescent protein (GFP) in the C-terminus of the mutant. Some kinetic properties of the GFP-fusion mutant resembled those of human aldehyde dehydrogenase class 3A1, a native dimer, in that the fusion dimer did not show burst in the generation of nicotinamide adenine dinucleotide (NADH) and was less sensitive to the action of specific modulators. The presence of primary isotope effect indicated that the rate-limiting step changed from NADH release to hydride transfer. The mutant showed higher activity with malondialdehyde and acrolein and was more resistant to inactivation by acrolein compared with the wild type. The mutant kinetic profile showed two hyperbolic components when the substrates were varied, suggesting the presence of two active sites with different affinities and catalytic capacities. In conclusion, the ALDH1A1-GFP dimeric mutant exhibits full site reactivity, suggesting that only the tetrameric structure induces the half-of-the-sites reactivity.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Ativação Enzimática , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retinal Desidrogenase
11.
FEMS Yeast Res ; 13(8): 804-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24028658

RESUMO

Ethanol accumulation during fermentation contributes to the toxic effects in Saccharomyces cerevisiae, impairing its viability and fermentative capabilities. The iron-sulfur (Fe-S) cluster biogenesis is encoded by the ISC genes. Reactive oxygen species (ROS) generation is associated with iron release from Fe-S-containing enzymes. We evaluated ethanol toxicity, ROS generation, antioxidant response and mitochondrial integrity in S. cerevisiae ISC mutants. These mutants showed an impaired tolerance to ethanol. ROS generation increased substantially when ethanol accumulated at toxic concentrations under the fermentation process. At the cellular and mitochondrial levels, ROS were increased in yeast treated with ethanol and increased to a higher level in the ssq1∆, isa1∆, iba57∆ and grx5∆ mutants - hydrogen peroxide and superoxide were the main molecules detected. Additionally, ethanol treatment decreased GSH/GSSG ratio and increased catalase activity in the ISC mutants. Examination of cytochrome c integrity indicated that mitochondrial apoptosis was triggered following ethanol treatment. The findings indicate that the mechanism of ethanol toxicity occurs via ROS generation dependent on ISC assembly system functionality. In addition, mutations in the ISC genes in S. cerevisiae contribute to the increase in ROS concentration at the mitochondrial and cellular level, leading to depletion of the antioxidant responses and finally to mitochondrial apoptosis.


Assuntos
Etanol/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Apoptose/efeitos dos fármacos , Etanol/toxicidade , Fermentação , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Proteomes ; 11(2)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37092456

RESUMO

Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in the receiving cells remain unclear. This study aimed to detect the intercellular protein transfer from mouse bone marrow stromal cells (OP9 cell line) to human T-lymphoblasts (CCRF-CEM cell line) using nanoLC-MS/MS-based shotgun proteomics in a 3D co-culture system. After 24 h of co-culture, 1513 and 67 proteins from human and mouse origin, respectively, were identified in CCRF-CEM cells. The presence of mouse proteins in the human cell line, detected by analyzing the differences in amino acid sequences of orthologous peptides, was interpreted as the result of intercellular transfer. The transferred proteins might have contributed to the observed resistance to vincristine, methotrexate, and hydrogen peroxide in the co-cultured leukemic cells. Our results suggest that shotgun proteomic analyses of co-cultured cells from different species could be a simple option to get a preliminary survey of the proteins exchanged among interacting cells.

13.
Biochim Biophys Acta ; 1808(7): 1888-95, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21440528

RESUMO

Several proteins that interact with cholesterol have a highly conserved sequence, corresponding to the cholesterol recognition/interaction amino acid consensus. Since cholesterol has been proposed to modulate both oligomerization and insertion of the pro-apoptotic protein BAX, we investigated the existence of such a motif in the BAX sequence. Residues 113 to 119 of the recombinant BAX α5-helix, LFYFASK, correspond with the sequence motif described for the consensus pattern, -L/V-(X)(1-5)-Y-(X)(1-5)-R/K. Functional characterization of the point mutations, K119A, Y115F, and L113A in BAX, was performed in liposomes supplemented with cholesterol, comparing binding, integration, and pore forming activities. Our results show that the mutations Y115F and L113A changed the cholesterol-dependent insertion observed in the wild type protein. In addition, substitutions in the BAX sequence modified the concentration dependency of carboxyfluorescein release in liposomes, although neither pore activity of the wild type or of any of the mutants significantly increased in cholesterol-enriched liposomes. Thus, while it is likely that the putative CRAC motif in BAX accounts for its enhanced insertion in cholesterol-enriched liposomes; the pore forming properties of BAX did not depend on cholesterol content in the membranes, albeit those mutations changed the pore channeling activity of the protein.


Assuntos
Motivos de Aminoácidos , Lipossomos , Proteína X Associada a bcl-2/química , Sequência de Aminoácidos , Biopolímeros/química , Colesterol/química , Fluoresceínas/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/isolamento & purificação
14.
Chem Res Toxicol ; 25(3): 722-9, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22339434

RESUMO

Aldehyde dehydrogenases (ALDHs) are involved in the detoxification of aldehydes generated as byproducts of lipid peroxidation. In this work, it was determined that, among the three most studied human ALDH isoforms, ALDH2 showed the highest catalytic efficiency for oxidation of acrolein, 4-hydroxy-2-nonenal (4-HNE), and malondialdehyde. ALDH1A1 also exhibited significant activity with these substrates, whereas ALDH3A1 only showed activity with 4-HNE. ALDH2 was also the most sensitive isoform to irreversible inactivation by these compounds. Remarkably, ALDH3A1 was insensitive to these aldehydes even at concentrations as high as 20 mM. Formation of adducts of ALDH1A1 and ALDH2 with acrolein increased their K(d) values for NAD(+) by 2- and 3-fold, respectively. NADH exerted a higher protection than propionaldehyde to the inactivation by acrolein, and this protection was additive. These results suggested that both binding sites, those for aldehyde and NAD(+) in ALDH2, are targets for the inactivation by lipid peroxidation products. Thus, with the advantage of being relatively inactivation-insensitive, ALDH1A1 and ALDH3A1 may be actively participating in the detoxification of these aldehydes in the cells.


Assuntos
Acroleína/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , Malondialdeído/metabolismo , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Aldeído-Desidrogenase Mitocondrial , Sequência de Aminoácidos , Humanos , Peroxidação de Lipídeos , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Retinal Desidrogenase , Alinhamento de Sequência
15.
Biomedicines ; 10(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36009394

RESUMO

Quorum sensing (QS) and type III secretion systems (T3SSs) are among the most attractive anti-virulence targets for combating multidrug-resistant pathogenic bacteria. Some halogenated furanones reduce QS-associated virulence, but their role in T3SS inhibition remains unclear. This study aimed to assess the inhibition of these two systems on Pseudomonas aeruginosa virulence. The halogenated furanones (Z)-4-bromo-5-(bromomethylene)-2(5H) (C-30) and 5-(dibromomethylene)-2(5H) (named hereafter GBr) were synthesized, and their ability to inhibit the secretion of type III exoenzymes and QS-controlled virulence factors was analyzed in P. aeruginosa PA14 and two clinical isolates. Furthermore, their ability to prevent bacterial establishment was determined in a murine cutaneous abscess model. The GBr furanone reduced pyocyanin production, biofilm formation, and swarming motility in the same manner or more effectively than C-30. Moreover, both furanones inhibited the secretion of ExoS, ExoT, or ExoU effectors in all tested strains. The administration of GBr (25 and 50 µM) to CD1 mice infected with the PA14 strain significantly decreased necrosis formation in the inoculation zone and the systemic spread of bacteria more efficiently than C-30 (50 µM). Molecular docking analysis suggested that the gem position of bromine in GBr increases its affinity for the active site of the QS LasR regulator. Overall, our findings showed that the GBr furanone displayed efficient multi-target properties that may favor the development of more effective anti-virulence therapies.

16.
J Bioenerg Biomembr ; 43(5): 519-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21833603

RESUMO

Ethanol is one of the most efficient carbon sources for Euglena gracilis. Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64-6.5 mM for ethanol, and 0.16-0.88 mM for NAD+, while the ALDH Km values were 1.7-5.3 µM for acetaldehyde and 33-47 µM for NAD+. These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.


Assuntos
Etanol/metabolismo , Euglena gracilis/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Potencial da Membrana Mitocondrial/fisiologia
17.
FASEB J ; 24(2): 599-608, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19783785

RESUMO

The F(1)F(O) and F(1)-ATPase complexes of Paracoccus denitrificans were isolated for the first time by ion exchange, gel filtration, and density gradient centrifugation into functional native preparations. The liposome-reconstituted holoenzyme preserves its tight coupling between F(1) and F(O) sectors, as evidenced by its high sensitivity to the F(O) inhibitors venturicidin and diciclohexylcarbodiimide. Comparison and N-terminal sequencing of the band profile in SDS-PAGE of the F(1) and F(1)F(O) preparations showed a novel 11-kDa protein in addition to the 5 canonical alpha, beta, gamma, delta, and epsilon subunits present in all known F(1)-ATPase complexes. BN-PAGE followed by 2D-SDS-PAGE confirmed the presence of this 11-kDa protein bound to the native F(1)F(O)-ATP synthase of P. denitrificans, as it was observed after being isolated. The recombinant 11 kDa and epsilon subunits of P. denitrificans were cloned, overexpressed, isolated, and reconstituted in particulate F(1)F(O) and soluble F(1)-ATPase complexes. The 11-kDa protein, but not the epsilon subunit, inhibited the F(1)F(O) and F(1)-ATPase activities of P. denitrificans. The 11-kDa protein was also found in Rhodobacter sphaeroides associated to its native F(1)F(O)-ATPase. Taken together, the data unveil a novel inhibitory mechanism exerted by this 11-kDa protein on the F(1)F(O)-ATPase nanomotor of P. denitrificans and closely related alpha-proteobacteria.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , Inibidores Enzimáticos/metabolismo , Peso Molecular , Paracoccus denitrificans/enzimologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/isolamento & purificação , Rhodobacter sphaeroides/enzimologia
18.
Arch Microbiol ; 191(1): 47-54, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18762912

RESUMO

Living organisms are subject to stress, and among these stressors, heavy metals exposure triggers accumulation of sulfur metabolites. Among these metabolites, glutathione and phytochelatins are found in several organisms, such as Euglena gracilis. Pre-exposing E. gracilis to low concentrations of Hg2+ generates a population with resistance to even 0.2 mM Cd2+, and this resistance relies partly on phytochelatins. p38 MAPK is stimulated by stress and is involved in apoptotic as well as survival mechanisms. In this study, we explored its participation in heavy metal-induced stress and its possible role in sulfur metabolite accumulation. We found that about 51% of the E. gracilis pretreated with Hg2+ becomes resistant to Cd2+ and proliferates despite the presence of this metal. The accumulation of the sulfur metabolites gamma-glu-cys, glutathione and phytochelatin 2 displayed cyclic patterns that were disturbed by a challenge with Cd2+. We observed a p38 MAPK-like activity that was stimulated by acute or chronic heavy metal exposure, and its inhibition by SB203580 slightly diminished the accumulation of sulfur compounds. p38 MAPK inhibition also affected basal levels of glutathione in either pretreated or control cells. Thus, it appears that p38 MAPK mediates redox stress component of the signal pathway induced by heavy metals.


Assuntos
Euglena gracilis/metabolismo , Metais Pesados/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais
19.
FEBS J ; 273(24): 5703-13, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17212785

RESUMO

High-molecular-mass PC complexes (PC-HMWCs) constituted by phytochelatins (PCs), cadmium and sulfide are synthesized by several organisms after exposure to cadmium. In this study, PC-HMWCs were isolated from photoheterotrophic Euglena gracilis and purified to homogeneity, resulting in compounds of molecular mass 50-380 kDa depending on the CdCl2 and sulfate concentrations in the culture medium. In contrast with plants and some yeasts, PC-HMWCs from E. gracilis mainly comprise (57-75%) monothiol molecules (Cys, gamma-glutamylcysteine, GSH) and, to a lesser extent (25-43%), PCs. A similar acid-soluble thiol compound composition was found in whole cell extracts. The -SH/Cd2+ and S2-/Cd2+ ratios found in purified PC-HMWCs were 1.5 and 1.8, respectively; the (-SH + S2-)/Cd2+ ratio was 3.2. PC-HMWCs of molecular mass 60 and 100 kDa were also localized inside Percoll-purified chloroplasts, in which cadmium and PCs were mainly compartmentalized. Cadmium and sulfur-rich clusters with similar sulfur/cadmium stoichiometries to those of the purified PC-HMWCs were detected in the chloroplast and throughout the cell by energy dispersive microanalysis and atomic resolution electron microscopy. The presence of PC-HMWCs in primitive photosynthetic eukaryotes such as the protist, E. gracilis, suggests that their function as the final cadmium-storage-inactivation process is widespread. Their particular intracellular localization suggests that chloroplasts may play a major role in the cadmium-resistance mechanism in organisms lacking a plant-like vacuole.


Assuntos
Compostos de Cádmio/química , Cloroplastos/química , Euglena gracilis/química , Glutationa/química , Substâncias Macromoleculares/química , Sulfetos/química , Animais , Compostos de Cádmio/análise , Euglena gracilis/ultraestrutura , Glutationa/análise , Substâncias Macromoleculares/isolamento & purificação , Peso Molecular , Fitoquelatinas , Sulfetos/análise
20.
Front Physiol ; 7: 412, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721794

RESUMO

Glycolysis provides precursors for the synthesis of macromolecules and may contribute to the ATP supply required for the constant and accelerated cellular duplication in cancer cells. In consequence, inhibition of glycolysis has been reiteratively considered as an anti-cancer therapeutic option. In previous studies, kinetic modeling of glycolysis in cancer cells allowed the identification of the main steps that control the glycolytic flux: glucose transporter, hexokinase (HK), hexose phosphate isomerase (HPI), and glycogen degradation in human cervix HeLa cancer cells and rat AS-30D ascites hepatocarcinoma. It was also previously experimentally determined that simultaneous inhibition of the non-controlling enzymes lactate dehydrogenase (LDH), pyruvate kinase (PYK), and enolase (ENO) brings about significant decrease in the glycolytic flux of cancer cells and accumulation of intermediate metabolites, mainly fructose-1,6-bisphosphate (Fru1,6BP), and dihydroxyacetone phosphate (DHAP), which are inhibitors of HK and HPI, respectively. Here it was found by kinetic modeling that inhibition of cancer glycolysis can be attained by blocking downstream non flux-controlling steps as long as Fru1,6BP and DHAP, regulatory metabolites of flux-controlling enzymes, are accumulated. Furthermore, experimental results and further modeling showed that oxamate and iodoacetate inhibitions of PYK, ENO, and glyceraldehyde3-phosphate dehydrogenase (GAPDH), but not of LDH and phosphoglycerate kinase, induced accumulation of Fru1,6BP and DHAP in AS-30D hepatoma cells. Indeed, PYK, ENO, and GAPDH exerted the highest control on the Fru1,6BP and DHAP concentrations. The high levels of these metabolites inhibited HK and HPI and led to glycolytic flux inhibition, ATP diminution, and accumulation of toxic methylglyoxal. Hence, the anticancer effects of downstream glycolytic inhibitors are very likely mediated by this mechanism. In parallel, it was also found that uncompetitive inhibition of the flux-controlling steps is a more potent mechanism than competitive and mixed-type inhibition to efficiently perturb cancer glycolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA