Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816615

RESUMO

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Infecções por HIV , HIV-1 , Macaca mulatta , Animais , Humanos , Proteína gp41 do Envelope de HIV/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Vacinação , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Nanopartículas/química , Feminino , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologia
2.
Cell ; 177(5): 1153-1171.e28, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080066

RESUMO

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Passiva , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/patologia , Feminino , Centro Germinativo/patologia , Centro Germinativo/virologia , Macaca mulatta , Masculino , Linfócitos T Auxiliares-Indutores/patologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
5.
Trends Immunol ; 44(1): 7-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470826

RESUMO

The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.


Assuntos
Genes de Imunoglobulinas , Mutação em Linhagem Germinativa , Animais , Humanos , Genes de Imunoglobulinas/genética , Imunidade Humoral/genética , Evolução Biológica , Células Germinativas , Mamíferos
6.
J Immunol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007649

RESUMO

The expressed Ab repertoire is a critical determinant of immune-related phenotypes. Ab-encoding transcripts are distinct from other expressed genes because they are transcribed from somatically rearranged gene segments. Human Abs are composed of two identical H and L chain polypeptides derived from genes in IGH locus and one of two L chain loci. The combinatorial diversity that results from Ab gene rearrangement and the pairing of different H and L chains contributes to the immense diversity of the baseline Ab repertoire. During rearrangement, Ab gene selection is mediated by factors that influence chromatin architecture, promoter/enhancer activity, and V(D)J recombination. Interindividual variation in the composition of the Ab repertoire associates with germline variation in IGH, implicating polymorphism in Ab gene regulation. Determining how IGH variants directly mediate gene regulation will require integration of these variants with other functional genomic datasets. In this study, we argue that standard approaches using short reads have limited utility for characterizing regulatory regions in IGH at haplotype resolution. Using simulated and chromatin immunoprecipitation sequencing reads, we define features of IGH that limit use of short reads and a single reference genome, namely 1) the highly duplicated nature of the DNA sequence in IGH and 2) structural polymorphisms that are frequent in the population. We demonstrate that personalized diploid references enhance performance of short-read data for characterizing mappable portions of the locus, while also showing that long-read profiling tools will ultimately be needed to fully resolve functional impacts of IGH germline variation on expressed Ab repertoires.

7.
Am J Hum Genet ; 109(6): 1065-1076, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35609568

RESUMO

The human genome contains tens of thousands of large tandem repeats and hundreds of genes that show common and highly variable copy-number changes. Due to their large size and repetitive nature, these variable number tandem repeats (VNTRs) and multicopy genes are generally recalcitrant to standard genotyping approaches and, as a result, this class of variation is poorly characterized. However, several recent studies have demonstrated that copy-number variation of VNTRs can modify local gene expression, epigenetics, and human traits, indicating that many have a functional role. Here, using read depth from whole-genome sequencing to profile copy number, we report results of a phenome-wide association study (PheWAS) of VNTRs and multicopy genes in a discovery cohort of ∼35,000 samples, identifying 32 traits associated with copy number of 38 VNTRs and multicopy genes at 1% FDR. We replicated many of these signals in an independent cohort and observed that VNTRs showing trait associations were significantly enriched for expression QTLs with nearby genes, providing strong support for our results. Fine-mapping studies indicated that in the majority (∼90%) of cases, the VNTRs and multicopy genes we identified represent the causal variants underlying the observed associations. Furthermore, several lie in regions where prior SNV-based GWASs have failed to identify any significant associations with these traits. Our study indicates that copy number of VNTRs and multicopy genes contributes to diverse human traits and suggests that complex structural variants potentially explain some of the so-called "missing heritability" of SNV-based GWASs.


Assuntos
Variações do Número de Cópias de DNA , Repetições Minissatélites , Variações do Número de Cópias de DNA/genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Repetições Minissatélites/genética , Fenótipo
8.
J Immunol ; 210(10): 1607-1619, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027017

RESUMO

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.


Assuntos
Regiões Determinantes de Complementaridade , Humanos , Regiões Determinantes de Complementaridade/genética , Sequência de Bases
9.
Nucleic Acids Res ; 51(16): e86, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548401

RESUMO

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET https://bitbucket.org/yaarilab/piglet). To allow researchers to further explore the approach on real data and to adapt it for their uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).


Assuntos
Genômica , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Alelos , Genótipo , Receptores de Antígenos de Linfócitos B/genética , Cadeias Pesadas de Imunoglobulinas/genética
10.
Genes Immun ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844673

RESUMO

Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of the IG loci has hindered use of standard high-throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we use long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n = 36), representing the first comprehensive description of IGK haplotype variation. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and novel structural variants harboring functional IGKV genes. Among 47 functional IGKV genes, we identify 145 alleles, 67 of which were not previously curated. We report inter-population differences in allele frequencies for 10 IGKV genes, including alleles unique to specific populations within this dataset. We identify haplotypes carrying signatures of gene conversion that associate with SNV enrichment in the IGK distal region, and a haplotype with an inversion spanning the proximal and distal regions. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.

11.
Am J Hum Genet ; 108(5): 809-824, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33794196

RESUMO

Variable number tandem repeats (VNTRs) are composed of large tandemly repeated motifs, many of which are highly polymorphic in copy number. However, because of their large size and repetitive nature, they remain poorly studied. To investigate the regulatory potential of VNTRs, we used read-depth data from Illumina whole-genome sequencing to perform association analysis between copy number of ∼70,000 VNTRs (motif size ≥ 10 bp) with both gene expression (404 samples in 48 tissues) and DNA methylation (235 samples in peripheral blood), identifying thousands of VNTRs that are associated with local gene expression (eVNTRs) and DNA methylation levels (mVNTRs). Using an independent cohort, we validated 73%-80% of signals observed in the two discovery cohorts, while allelic analysis of VNTR length and CpG methylation in 30 Oxford Nanopore genomes gave additional support for mVNTR loci, thus providing robust evidence to support that these represent genuine associations. Further, conditional analysis indicated that many eVNTRs and mVNTRs act as QTLs independently of other local variation. We also observed strong enrichments of eVNTRs and mVNTRs for regulatory features such as enhancers and promoters. Using the Human Genome Diversity Panel, we define sets of VNTRs that show highly divergent copy numbers among human populations and show that these are enriched for regulatory effects and preferentially associate with genes that have been linked with human phenotypes through GWASs. Our study provides strong evidence supporting functional variation at thousands of VNTRs and defines candidate sets of VNTRs, copy number variation of which potentially plays a role in numerous human phenotypes.


Assuntos
Variações do Número de Cópias de DNA/genética , Metilação de DNA , Regulação da Expressão Gênica , Repetições Minissatélites/genética , Locos de Características Quantitativas/genética , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Estudos de Coortes , Ilhas de CpG/genética , Elementos Facilitadores Genéticos/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Regiões Promotoras Genéticas/genética , Adulto Jovem
12.
Genes Immun ; 24(1): 21-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539592

RESUMO

Immunoglobulins (IGs), crucial components of the adaptive immune system, are encoded by three genomic loci. However, the complexity of the IG loci severely limits the effective use of short read sequencing, limiting our knowledge of population diversity in these loci. We leveraged existing long read whole-genome sequencing (WGS) data, fosmid technology, and IG targeted single-molecule, real-time (SMRT) long-read sequencing (IG-Cap) to create haplotype-resolved assemblies of the IG Lambda (IGL) locus from 6 ethnically diverse individuals. In addition, we generated 10 diploid assemblies of IGL from a diverse cohort of individuals utilizing IG-Cap. From these 16 individuals, we identified significant allelic diversity, including 36 novel IGLV alleles. In addition, we observed highly elevated single nucleotide variation (SNV) in IGLV genes relative to IGL intergenic and genomic background SNV density. By comparing SNV calls between our high quality assemblies and existing short read datasets from the same individuals, we show a high propensity for false-positives in the short read datasets. Finally, for the first time, we nucleotide-resolved common 5-10 Kb duplications in the IGLC region that contain functional IGLJ and IGLC genes. Together these data represent a significant advancement in our understanding of genetic variation and population diversity in the IGL locus.


Assuntos
Genes de Imunoglobulinas , Cadeias lambda de Imunoglobulina , Humanos , Cadeias lambda de Imunoglobulina/genética , Genômica , Variação Genética , Nucleotídeos
13.
Am J Hum Genet ; 107(4): 654-669, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937144

RESUMO

There is growing recognition that epivariations, most often recognized as promoter hypermethylation events that lead to gene silencing, are associated with a number of human diseases. However, little information exists on the prevalence and distribution of rare epigenetic variation in the human population. In order to address this, we performed a survey of methylation profiles from 23,116 individuals using the Illumina 450k array. Using a robust outlier approach, we identified 4,452 unique autosomal epivariations, including potentially inactivating promoter methylation events at 384 genes linked to human disease. For example, we observed promoter hypermethylation of BRCA1 and LDLR at population frequencies of ∼1 in 3,000 and ∼1 in 6,000, respectively, suggesting that epivariations may underlie a fraction of human disease which would be missed by purely sequence-based approaches. Using expression data, we confirmed that many epivariations are associated with outlier gene expression. Analysis of variation data and monozygous twin pairs suggests that approximately two-thirds of epivariations segregate in the population secondary to underlying sequence mutations, while one-third are likely sporadic events that occur post-zygotically. We identified 25 loci where rare hypermethylation coincided with the presence of an unstable CGG tandem repeat, validated the presence of CGG expansions at several loci, and identified the putative molecular defect underlying most of the known folate-sensitive fragile sites in the genome. Our study provides a catalog of rare epigenetic changes in the human genome, gives insight into the underlying origins and consequences of epivariations, and identifies many hypermethylated CGG repeat expansions.


Assuntos
Proteína BRCA1/genética , Epigênese Genética , Doenças Genéticas Inatas/genética , Genoma Humano , Receptores de LDL/genética , Expansão das Repetições de Trinucleotídeos , Proteína BRCA1/metabolismo , Metilação de DNA , Feminino , Ácido Fólico/metabolismo , Inativação Gênica , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Loci Gênicos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Regiões Promotoras Genéticas , Receptores de LDL/metabolismo , Gêmeos Monozigóticos
14.
Bioinformatics ; 36(3): 922-924, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397844

RESUMO

SUMMARY: While next-generation sequencing (NGS) has dramatically increased the availability of genomic data, phased genome assembly and structural variant (SV) analyses are limited by NGS read lengths. Long-read sequencing from Pacific Biosciences and NGS barcoding from 10x Genomics hold the potential for far more comprehensive views of individual genomes. Here, we present MsPAC, a tool that combines both technologies to partition reads, assemble haplotypes (via existing software) and convert assemblies into high-quality, phased SV predictions. MsPAC represents a framework for haplotype-resolved SV calls that moves one step closer to fully resolved, diploid genomes. AVAILABILITY AND IMPLEMENTATION: https://github.com/oscarlr/MsPAC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Genoma , Haplótipos , Análise de Sequência de DNA , Software
15.
Hum Mutat ; 41(4): 800-806, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898844

RESUMO

The mechanisms underlying de novo insertion/deletion (indel) genesis, such as polymerase slippage, have been hypothesized but not well characterized in the human genome. We implemented two methodological improvements, which were leveraged to dissect indel mutagenesis. We assigned de novo variants to parent-of-origin (i.e., phasing) with low-coverage long-read whole-genome sequencing, achieving better phasing compared to short-read sequencing (medians of 84% and 23%, respectively). We then wrote an application programming interface to classify indels into three subtypes according to sequence context. Across three cohorts with different phasing methods (Ntrios = 540, all cohorts), we observed that one de novo indel subtype, change in copy count (CCC), was significantly correlated with father's (p = 7.1 × 10-4 ) but not mother's (p = .45) age at conception. We replicated this effect in three cohorts without de novo phasing (ppaternal = 1.9 × 10-9 , pmaternal = .61; Ntrios = 3,391, all cohorts). Although this is consistent with polymerase slippage during spermatogenesis, the percentage of variance explained by paternal age was low, and we did not observe an association with replication timing. These results suggest that spermatogenesis-specific events have a minor role in CCC indel mutagenesis, one not observed for other indel subtypes nor for maternal age in general. These results have implications for indel modeling in evolution and disease.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Genômica/métodos , Mutação INDEL , Software , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único
18.
Science ; 384(6697): eadj8321, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753769

RESUMO

Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes , Regiões Determinantes de Complementaridade , Centro Germinativo , Anticorpos Anti-HIV , Animais , Humanos , Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/imunologia , Microscopia Crioeletrônica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Macaca mulatta , Células B de Memória/imunologia
19.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014266

RESUMO

Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), has been shown to be of critical importance for immune responses to pathogens and vaccines. In recent years, B cell and T cell receptor repertoire sequencing (Rep-Seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci in different populations. Here we present a novel algorithm for extra-sensitive and specific variable (V) and joining (J) gene allele inference and genotyping allowing reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput genotyping and novel allele discovery from a wide variety of existing datasets. The developed algorithm is a part of the MiXCR software ( https://mixcr.com ) and can be incorporated into any pipeline utilizing upstream processing with MiXCR. We demonstrate the accuracy of this approach using Rep-Seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (IGH) Rep-Seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA; TRB) Rep-Seq dataset, representing 134 individuals. This allowed us to assess the genetic diversity of genes within the IGH, TRA and TRB loci in different populations and demonstrate the connection between antibody repertoire gene usage and the number of allelic variants present in the population. Finally we established a database of allelic variants of V and J genes inferred from Rep-Seq data and their population frequencies with free public access at https://vdj.online .

20.
Nat Commun ; 14(1): 4419, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479682

RESUMO

Variation in the antibody response has been linked to differential outcomes in disease, and suboptimal vaccine and therapeutic responsiveness, the determinants of which have not been fully elucidated. Countering models that presume antibodies are generated largely by stochastic processes, we demonstrate that polymorphisms within the immunoglobulin heavy chain locus (IGH) impact the naive and antigen-experienced antibody repertoire, indicating that genetics predisposes individuals to mount qualitatively and quantitatively different antibody responses. We pair recently developed long-read genomic sequencing methods with antibody repertoire profiling to comprehensively resolve IGH genetic variation, including novel structural variants, single nucleotide variants, and genes and alleles. We show that IGH germline variants determine the presence and frequency of antibody genes in the expressed repertoire, including those enriched in functional elements linked to V(D)J recombination, and overlapping disease-associated variants. These results illuminate the power of leveraging IGH genetics to better understand the regulation, function, and dynamics of the antibody response in disease.


Assuntos
Genes de Cadeia Pesada de Imunoglobulina , Genes de Imunoglobulinas , Humanos , Genes de Cadeia Pesada de Imunoglobulina/genética , Alelos , Mutação em Linhagem Germinativa , Cadeias Pesadas de Imunoglobulinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA