Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurosurg Focus ; 49(1): E5, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610296

RESUMO

OBJECTIVE: Intracranial human brain recordings typically utilize recording systems that do not distinguish individual neuron action potentials. In such cases, individual neurons are not identified by location within functional circuits. In this paper, verified localization of singly recorded hippocampal neurons within the CA3 and CA1 cell fields is demonstrated. METHODS: Macro-micro depth electrodes were implanted in 23 human patients undergoing invasive monitoring for identification of epileptic seizure foci. Individual neurons were isolated and identified via extracellular action potential waveforms recorded via macro-micro depth electrodes localized within the hippocampus. A morphometric survey was performed using 3T MRI scans of hippocampi from the 23 implanted patients, as well as 46 normal (i.e., nonepileptic) patients and 26 patients with a history of epilepsy but no history of depth electrode placement, which provided average dimensions of the hippocampus along typical implantation tracks. Localization within CA3 and CA1 cell fields was tentatively assigned on the basis of recording electrode site, stereotactic positioning of the depth electrode in comparison with the morphometric survey, and postsurgical MRI. Cells were selected as candidate CA3 and CA1 principal neurons on the basis of waveform and firing rate characteristics and confirmed within the CA3-to-CA1 neural projection pathways via measures of functional connectivity. RESULTS: Cross-correlation analysis confirmed that nearly 80% of putative CA3-to-CA1 cell pairs exhibited positive correlations compatible with feed-forward connection between the cells, while only 2.6% exhibited feedback (inverse) connectivity. Even though synchronous and long-latency correlations were excluded, feed-forward correlation between CA3-CA1 pairs was identified in 1071 (26%) of 4070 total pairs, which favorably compares to reports of 20%-25% feed-forward CA3-CA1 correlation noted in published animal studies. CONCLUSIONS: This study demonstrates the ability to record neurons in vivo from specified regions and subfields of the human brain. As brain-machine interface and neural prosthetic research continues to expand, it is necessary to be able to identify recording and stimulation sites within neural circuits of interest.


Assuntos
Eletrofisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Estimulação Encefálica Profunda/métodos , Estimulação Elétrica/métodos , Eletrodos , Eletrofisiologia/métodos , Humanos
2.
J Neurosci Methods ; 402: 110009, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37952832

RESUMO

BACKGROUND: There are pushes toward non-invasive stimulation of neural tissues to prevent issues that arise from invasive brain recordings and stimulation. Transcranial Focused Ultrasound (TFUS) has been examined as a way to stimulate non-invasively, but previous studies have limitations in the application of TFUS. As a result, refinement is needed to improve stimulation results. NEW METHOD: We utilized a custom-built capacitive micromachined ultrasonic transducer (CMUT) that would send ultrasonic waves through skin and skull to targets located in the Frontal Eye Fields (FEF) region triangulated from co-registered MRI and CT scans while a non-human primate subject was performing a discrimination behavioral task. RESULTS: We observed that the stimulation immediately caused changes in the local field potential (LFP) signal that continued until stimulation ended, at which point there was higher voltage upon the cue for the animal to saccade. This co-incided with increases in activity in the alpha band during stimulation. The activity rebounded mid-way through our electrode-shank, indicating a specific point of stimulation along the shank. We observed different LFP signals for different stimulation targets, indicating the ability to"steer" the stimulation through the transducer. We also observed a bias in first saccades towards the opposite direction. CONCLUSIONS: In conclusion, we provide a new approach for non-invasive stimulation during performance of a behavioral task. With the ability to steer stimulation patterns and target using a large amount of transducers, the ability to provide non-invasive stimulation will be greatly improved for future clinical and research applications.


Assuntos
Lobo Frontal , Ultrassom , Animais , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Encéfalo , Movimentos Sacádicos , Primatas , Transdutores
3.
Front Comput Neurosci ; 18: 1263311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390007

RESUMO

Objective: Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject's own hippocampal spatiotemporal neural codes for memory. Approach: We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results: MDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation. Significance: These results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.

5.
Front Hum Neurosci ; 16: 933401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959242

RESUMO

RATIONALE: Deep brain stimulation (DBS) of the hippocampus is proposed for enhancement of memory impaired by injury or disease. Many pre-clinical DBS paradigms can be addressed in epilepsy patients undergoing intracranial monitoring for seizure localization, since they already have electrodes implanted in brain areas of interest. Even though epilepsy is usually not a memory disorder targeted by DBS, the studies can nevertheless model other memory-impacting disorders, such as Traumatic Brain Injury (TBI). METHODS: Human patients undergoing Phase II invasive monitoring for intractable epilepsy were implanted with depth electrodes capable of recording neurophysiological signals. Subjects performed a delayed-match-to-sample (DMS) memory task while hippocampal ensembles from CA1 and CA3 cell layers were recorded to estimate a multi-input, multi-output (MIMO) model of CA3-to-CA1 neural encoding and a memory decoding model (MDM) to decode memory information from CA3 and CA1 neuronal signals. After model estimation, subjects again performed the DMS task while either MIMO-based or MDM-based patterned stimulation was delivered to CA1 electrode sites during the encoding phase of the DMS trials. Each subject was sorted (post hoc) by prior experience of repeated and/or mild-to-moderate brain injury (RMBI), TBI, or no history (control) and scored for percentage successful delayed recognition (DR) recall on stimulated vs. non-stimulated DMS trials. The subject's medical history was unknown to the experimenters until after individual subject memory retention results were scored. RESULTS: When examined compared to control subjects, both TBI and RMBI subjects showed increased memory retention in response to both MIMO and MDM-based hippocampal stimulation. Furthermore, effects of stimulation were also greater in subjects who were evaluated as having pre-existing mild-to-moderate memory impairment. CONCLUSION: These results show that hippocampal stimulation for memory facilitation was more beneficial for subjects who had previously suffered a brain injury (other than epilepsy), compared to control (epilepsy) subjects who had not suffered a brain injury. This study demonstrates that the epilepsy/intracranial recording model can be extended to test the ability of DBS to restore memory function in subjects who previously suffered a brain injury other than epilepsy, and support further investigation into the beneficial effect of DBS in TBI patients.

6.
J Neural Eng ; 15(3): 036014, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29589592

RESUMO

OBJECTIVE: We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. APPROACH: We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MAIN RESULTS: MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. SIGNIFICANCE: These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.


Assuntos
Eletrodos Implantados , Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Próteses Neurais , Desempenho Psicomotor/fisiologia , Eletrodos Implantados/tendências , Hipocampo/cirurgia , Humanos , Próteses Neurais/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA