Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(9): 7563-7572, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362712

RESUMO

Aryl-substituted alkanethiolate (AT) self-assembled monolayers (SAMs) exhibit typically so-called odd-even effects, viz. systematic variations in the film structure, packing density, and molecular inclination depending on the parity of the number of the methylene units in the alkyl linker, n. As an exception to this rule, ATs carrying an anthracen-2-yl group (Ant-n) as tail group were reported to have different behavior due the non-symmetric attachment of the anthracene unit to the AT linker, providing additional degree of freedom for the molecular organization and allowing for partial compensation of the odd-even effects. In this context, the structure of SAMs formed by adsorption of anthracene-substituted ATs (Ant-n; n = 1-6) at room temperature on Au(111) substrate was investigated by high-resolution scanning tunnelling microscopy (STM). Most of these SAMs exhibit a coexistence of two different ordered phases, some of which are common for either n = odd or n = even while other vary over the series, showing a broad variety of different structures. The average packing density of the Ant-n SAMs, derived from the analysis of the STM data, varies by 7.5-10% depending on the parity of n, being, as expected, higher for n = odd. The respective extent of the odd-even effects is noticeably lower than that usually observed for other aryl-substituted monolayers (∼25%), which goes in line with the previous findings and emphasizes the impact of the non-symmetric attachment of the aromatic unit.

2.
Chemphyschem ; 23(19): e202200347, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35856831

RESUMO

Self-assembled monolayers (SAMs) of 4-fluorobenzenemethanethiol (p-FBMT) on Au(111), prepared by immersion procedure (1 mM ethanolic solution; 60 °C; 18 h), were characterized by scanning tunneling microscopy (STM). The data suggest the formation of highly ordered monolayer with a commensurate structure, described by the 2 3 × 13 R 13 ∘ unit cell. The STM appearance of this cell occurs, however, in two different forms, with either well-localized individual spots or splitting of these spots in two components. These components are assigned to the tunneling through the entire molecule or sulfur docking group only. The respective spots correspond then to the terminal fluorine atom and sulfur docking group, manifesting, thus, building-block-resolving STM imaging. The accessibility of the docking group for direct tunneling is most likely related to a specific molecular organization for one of the two possible internal structures of the unit cell. The above results represent a showcase for potential of STM for imaging of upright-arranged and densely packed molecular assemblies, such as SAMs.


Assuntos
Microscopia de Tunelamento , Compostos de Sulfidrila , Flúor , Ouro/química , Compostos de Sulfidrila/química , Enxofre
3.
Phys Chem Chem Phys ; 22(24): 13580-13591, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32514514

RESUMO

The structure and morphology of self-assembled monolayers (SAMs) prepared on Au(111) from solutions of terphenylethanethiol (TP2) at room temperature and subsequently annealed at temperatures up to 473 K were investigated using scanning tunneling microscopy. This system is of particular interest because of its metastable character, holding potential for its tailored modification. Indeed, the data suggest the formation of several different structural phases, viz. α, ß, γ, and δ, appearing progressively for the as-prepared and annealed samples. The consecutive α → ß â†’ γ → δ phase transitions occurring with increasing annealing temperature involved a continuous reduction of the molecular packing density and significant changes in the substrate morphology. The major morphological changes were the appearance and progressive growth of monoatomic gold islands, on top of which the TP2 phases were formed, representing in all cases a single domain for a particular island and restricted only by the island size. For all the phases, inclined molecular orientation was assumed while a so-called lying-down arrangement, in which the TP2 backbones are orientated parallel to the gold surface, was not observed. A nearly complete desorption of the TP2 molecules was recorded at an annealing temperature of 473 K, accompanied by the drastic change in the surface morphology.

4.
Phys Chem Chem Phys ; 22(16): 8768-8780, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32285064

RESUMO

The mechanism of the hydrogen evolution reaction, although intensively studied for more than a century, remains a fundamental scientific challenge. Many important questions are still open, making it elusive to establish rational principles for electrocatalyst design. In this work, a comprehensive investigation was conducted to identify which dynamic phenomena at the electrified interface are prerequisite for the formation of molecular hydrogen. In fact, what we observe as an onset of the macroscopic faradaic current originates from dynamic structural changes in the double layer, which are entropic in nature. Based on careful analysis of the activation process, an electrocatalytic descriptor is introduced, evaluated and experimentally confirmed. The catalytic activity descriptor is named as the potential of minimum entropy. The experimentally verified catalytic descriptor reveals significant potential to yield innovative insights for the design of catalytically active materials and interfaces.

5.
Langmuir ; 35(1): 70-77, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30525645

RESUMO

Metal pretreatment is typically the first step in a reliable corrosion protection system. This work explores the incorporation of complexes between the cyclic oligosaccharide ß-cyclodextrin (ß-CD) and the molecular organic corrosion inhibitor 2-mercaptobenzothiazole (MBT) into an oxide-based pretreatment layer on metallic zinc. The layers were produced by a precorrosion step in the presence of ß-CD. The resulting films have a morphology dominated by spherical particles. X-ray photoelectron spectroscopy investigations of the surfaces show the sulfur atoms of MBT to be partially oxidized but mostly intact. Samples pretreated with such a layer were subsequently coated with a model polymer coating, and the delamination of this model coating from an artificial defect was monitored by a scanning Kelvin probe (SKP). The SKP results show a slow down of delamination after several hours of the ongoing corrosion process for surfaces pretreated with the complexes. Finally, an increase in the electrode potential in the defect was observed, with a subsequent complete stop in delamination and repassivation of the defect after ≈10 h. This repassivation is attributed to the release of MBT after the initiation of the corrosion process. Most likely, the increase of pH, combined with the availability of aqueous solution, facilitates the MBT release after the initiation of a corrosion process. Consequently, complexes formed from ß-CD and corrosion inhibitors can be effectively incorporated into inorganic pretreatments, and the inhibitor component can be released upon start of the corrosion process.

6.
Sci Technol Adv Mater ; 20(1): 1073-1089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807219

RESUMO

Quantitative detection of hydrogen in metal is important in providing a better basis for fundamental investigations of hydrogen embrittlement and hydrogen-related corrosion phenomena. Thermal desorption spectroscopy (TDS) has long been used in characterizing different hydrogen traps inside materials. However, in TDS measurements, the diffusible hydrogen (hydrogen at interstitial sites and weakly bound hydrogen) is usually not detected. The Davanathan-Starchurski permeation technique can cover this shortage. However, for such experiments, the stability of the palladium at the exit side, i.e. in aqueous solution under high potential polarization is an important issue. Alternatively, a Kelvin probe-based (KP-based) potentiometric method developed a few years ago has shown to allow quantitative determination of hydrogen in metal. This method is based on measuring the hydrogen electrode potential on the Pd-coated surface. The aim of this work is to check the reliability of this method and to demonstrate its potential applications in determining the hydrogen amount distributed in both shallow and deep traps in steel. The results reveal that different crystallographic orientation, grain shapes and grain sizes of the deposited palladium film (in the range of variation in this work) do not cause relevant effects on the KP-based hydrogen detection. It is shown in this work that the time lag and permeation rate derived from the permeation curves obtained by this method show a very good reliability and the calculated hydrogen amount shows a good agreement with TDS results. 5 wt.% Ni ferritic steel is used as a model material in this work.

7.
Chemphyschem ; 18(6): 702-714, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28090745

RESUMO

The structure and molecular organization of self-assembled monolayers (SAMs) depend on a complex interplay of intermolecular and molecule-substrate interactions, so that even a small change in molecular composition can result in noticeable changes in the SAM structure. Herein we show that decoration of the most basic aromatic SAM constituent, benzenethiol, with two trifluoromethyl groups leads to distinct polymorphism in the respective SAMs, in which the appearance of a specific structural phase or a combination of several different phases is dependent on the parameters of the preparation procedure. High-quality films with a single crystallographic phase and significantly large domains could only be prepared after a short immersion time (5 min) and an additional re-immersion of the sample in pure ethanol at an elevated temperature. A standard 24 h immersion at room temperature led to poorly defined films with a large defect density and only a small portion of the surface covered by well-ordered molecular domains.

8.
Phys Chem Chem Phys ; 19(26): 17019-17027, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28636684

RESUMO

A major step in the development of (electro)catalysis would be the possibility to estimate accurately the energetics of adsorption processes related to reaction intermediates. Computational chemistry (e.g. using DFT) developed significantly in that direction and allowed the fast prediction of (electro)catalytic activity trends and improved the general understanding of adsorption at electrochemical interfaces. However, building a reliable and comprehensive picture of electrocatalytic reactions undoubtedly requires experimental assessment of adsorption energies. In this way, the results obtained by computational chemistry can be complemented or challenged, which often is a necessary pathway to further advance the understanding of electrochemical interfaces. In this work an interfacial descriptor of the electrocatalytic activity for hydrogen evolution reaction, analogue to the adsorption energy of the Had intermediate, is identified experimentally using in situ probing of the surface potentials of the metals, under conditions of continuous control of the humidity and the gas exposure. The derived activity trends give clear indication that the electrocatalytic activity for hydrogen evolution reaction is a consequence of an interplay between metal-hydrogen and metal-water interactions. In other words it is shown that the M-H bond formation strongly depends on the nature of the metal-water interaction. In fact, it seems that water dipoles at the metal/electrolyte interface play a critical role for electron and proton transfer in the double layer.

9.
Angew Chem Int Ed Engl ; 55(20): 6028-32, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27061237

RESUMO

Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites.

10.
Phys Chem Chem Phys ; 17(34): 21988-96, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235109

RESUMO

We have conducted a combined experimental and theoretical study on the optimization of hexa-peri-hexabenzocoronene (HBC) as organic semiconductor. While orientations with high electronic coupling are unfavorable in the native liquid crystalline phase of HBC, we enforced such orientations by applying external constraints. To this end, self-assembled monolayers (SAMs) were formed by a non-conventional preparation method on an Au-substrate using electrochemical control. Within these SAMs the HBC units are forced into favorable orientations that cannot be achieved by unconstrained crystallization. For simulating the charge transport we applied a recently developed approach, where the molecular structure and the charge carrier are propagated simultaneously during a molecular dynamics simulation. Experiments as well as simulations are mutually supportive of an improved mobility in these novel materials. The implication of these findings for a rational design of future organic semiconductors will be discussed.

11.
Phys Chem Chem Phys ; 16(40): 22255-61, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25219347

RESUMO

Materials science in general, and surface/interface science in particular, have greatly benefited from the development of high energy synchrotron radiation facilities. Irradiation with intense ionizing beams can however influence relevant sample properties. Permanent radiation damage and irradiation-induced sample modifications have been investigated in detail during the last decades. Conversely, reversible sample alterations taking place only during irradiation are still lacking comprehensive in situ characterization. Irradiation-induced surface charging phenomena are particularly relevant for a wide range of interface science investigations, in particular those involving surfaces of solid substrates in contact with gaseous or liquid phases. Here, we demonstrate partially reversible radiation-induced surface charging phenomena, which extend far beyond the spatial dimensions of the X-ray beam mainly as a consequence of the interaction between the surface and ionized ambient molecules. The charging magnitude and sign are found to be surface chemistry specific and dependent on the substrates' bulk conductivity and grounding conditions. These results are obtained by combining a scanning Kelvin probe with a synchrotron surface diffractometer to allow simultaneous in situ work function measurements during precisely controlled hard X-ray micro-beam irradiation.

12.
ACS Sustain Chem Eng ; 12(26): 9882-9896, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38966240

RESUMO

Ammonia is a promising alternative hydrogen carrier that can be utilized for the solid-state reduction of iron oxides for sustainable ironmaking due to its easy transportation and high energy density. The main challenge for its utilization on an industrial scale is to understand the reaction kinetics under different process conditions and the associated nitrogen incorporation in the reduced material that originates from ammonia decomposition. In this work, the effect of temperature on the reduction efficiency and nitride formation is investigated through phase, local chemistry, and gas evolution analysis. The effects of inherent reactions and diffusion on phase formation and chemistry evolution are discussed in relation to the reduction temperature. The work also discusses nitrogen incorporation into the material through both spontaneous and in-process nitriding, which fundamentally affects the structure and chemistry of the reduced material. Finally, the effect of nitrogen incorporation on the reoxidation tendency of the ammonia-based reduced material is investigated and compared with that of the hydrogen-based reduced counterpart. The results provide a fundamental understanding of the reduction and nitriding for iron oxides exposed to ammonia at temperatures from 500 to 800 °C, serving as a basis for exploitation and upscaling of ammonia-based direct reduction for future green steel production.

13.
Nat Commun ; 15(1): 561, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228660

RESUMO

Aluminum alloys play an important role in circular metallurgy due to their good recyclability and 95% energy gain when made from scrap. Their low density and high strength translate linearly to lower greenhouse gas emissions in transportation, and their excellent corrosion resistance enhances product longevity. The durability of Al alloys stems from the dense barrier oxide film strongly bonded to the surface, preventing further degradation. However, despite decades of research, the individual elemental reactions and their influence on the nanoscale characteristics of the oxide film during corrosion in multicomponent Al alloys remain unresolved questions. Here, we build up a direct correlation between the near-atomistic picture of the corrosion oxide film and the solute reactivity in the aqueous corrosion of a high-strength Al-Zn-Mg-Cu alloy. We reveal the formation of nanocrystalline Al oxide and highlight the solute partitioning between the oxide and the matrix and segregation to the internal interface. The sharp decrease in partitioning content of Mg in the peak-aged alloy emphasizes the impact of heat treatment on the oxide stability and corrosion kinetics. Through H isotopic labelling with deuterium, we provide direct evidence that the oxide acts as a trap for this element, pointing at the essential role of the Al oxide might act as a kinetic barrier in preventing H embrittlement. Our findings advance the mechanistic understanding of further improving the stability of Al oxide, guiding the design of corrosion-resistant alloys for potential applications.

14.
J Am Chem Soc ; 135(38): 14198-205, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23957577

RESUMO

Redox-responsive nanocapsules consisting of conductive polyaniline and polypyrrole shells were successfully synthesized by using the interface of miniemulsion droplets as a template for oxidative polymerizations. The redox properties of the capsules were investigated by optical spectroscopies, electron microscopy, and cyclic voltammetry. Self-healing (SH) chemicals such as diglycidyl ether or dicarboxylic acid terminated polydimethylsiloxane (PDMS-DE or PDMS-DC) were encapsulated into the nanocapsules during the miniemulsion process and their redox-responsive release was monitored by (1)H NMR spectroscopy. The polyaniline capsules exhibited delayed release under oxidation and rapid release under reduction, which make them promising candidates for anticorrosion applications.

15.
Langmuir ; 29(44): 13449-56, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24083467

RESUMO

Self-assembled monolayers (SAMs) of terphenylthiol (TPT) on gold Au(111) substrates exhibit well-ordered structures over large scales if they are annealed in ethanol at 40 °C after their formation. Using high-resolution STM, two distinct, ordered phases could be observed. The simpler phase, designated as α-phase, consists of closely packed molecules in the well-known (2√3 × âˆš3)R30° structure. It could be demonstrated that under less suitable imaging conditions this phase can be mistaken as the hexagonal (√3 × âˆš3)R30°, which resolves a discrepancy in between previous reports. The second phase is characterized by a stripe pattern with a periodicity of 2.0 nm and can be described by a point-on-line incommensurate (4 × n) ([Formula: see text]) lattice with n close to 8. This ß-phase contains four pairs of terphenylthiolate molecules, which might be held together by either disulfide bonds or the recently discussed S-Au-S motif, and is thus 35% ± 15% less densely packed than the α-phase. The coexistence of these phases explains the variability of spectroscopic results obtained in the past for terphenylthiolate layers, since their relative proportion determines the average thicknesses/tilt angles found in these studies.

16.
J Opt Soc Am B ; 30(1)2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24235781

RESUMO

Vibrational sum-frequency-generation (SFG) spectroscopy experiments at electrified interfaces involve incident laser radiation at frequencies in the IR and near-IR/visible regions as well as a static electric field on the surface. Here we show that mixing the three fields present on the surface can result in third-order effects in resonant SFG signals. This was achieved for closed packed self-assembled monolayers (SAMs) with molecular groups of high optical nonlinearity and surface potentials similar to those typically applied in cyclic voltammograms. Broadband SFG spectroscopy was applied to study a hydrophobic well-ordered araliphatic SAM on a Au(111) surface using a thin-layer analysis cell for spectro-electrochemical investigations in a 100 mM NaOH electrolyte solution. Resonant contributions were experimentally separated from non-resonant contributions of the Au substrate and theoretically analyzed using a fitting function including third-order terms. The resulting ratio of third-order to second-order susceptibilities was estimated to be [Formula: see text](10-10) m/V.

17.
Electrochim Acta ; 902013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24235778

RESUMO

Electroreductive desorption of a highly ordered self-assembled monolayer (SAM) formed by the araliphatic thiol (4-(4-(4-pyridyl)phenyl)phenyl)methanethiol leads to a concurrent rapid hydrogen evolution reaction (HER). The desorption process and resulting interfacial structure were investigated by voltammetric techniques, in situ spectroscopic ellipsometry, and in situ vibrational sum-frequency-generation (SFG) spectroscopy. Voltammetric experiments on SAM-modified electrodes exhibit extraordinarily high peak currents, which di er between Au(111) and polycrystalline Au substrates. Association of reductive desorption with HER is shown to be the origin of the observed excess cathodic charges. The studied SAM preserves its two-dimensional order near Au surface throughout a fast voltammetric scan even when the vertex potential is set several hundred millivolt beyond the desorption potential. A model is developed for the explanation of the observed rapid HER involving ordering and pre-orientation of water present in the nanometer-sized reaction volume between desorbed SAM and the Au electrode, by the structurally extremely stable monolayer, leading to the observed catalysis of the HER.

18.
Sci Technol Adv Mater ; 14(1): 014201, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877549

RESUMO

Hydrogen in materials is an important topic for many research fields in materials science. Hence in the past quite a number of different techniques for determining the amount of hydrogen in materials and for measuring hydrogen permeation through them have been developed. Some of these methods have found widespread application. But for many problems the achievable sensitivity is usually not high enough and ready-to-use techniques providing also good spatial resolution, especially in the submicron range, are very limited, and mostly not suitable for widespread application. In this work this situation will be briefly reviewed and a novel scanning probe technique based method introduced.

19.
Adv Mater ; 35(47): e2300101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36939547

RESUMO

Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.

20.
Materials (Basel) ; 16(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048932

RESUMO

Stainless steels are important in various industries due to their unique properties and durable life cycle. However, with increasing demands for prolonged life cycles, better mechanical properties, and improved residual stresses, new treatment techniques, such as deep cryogenic treatment (DCT), are on the rise to further push the improvement in stainless steels. This study focuses on the effect of DCT on austenitic stainless steel AISI 304L, while also considering the influence of solution annealing temperature on DCT effectiveness. Both aspects are assessed through the research of microstructure, selected mechanical properties (hardness, fracture and impact toughness, compressive and tensile strength, strain-hardening exponent, and fatigue resistance), and residual stresses by comparing the DCT state with conventionally treated counterparts. The results indicate the complex interdependency of investigated microstructural characteristics and residual stress states, which is the main reason for induced changes in mechanical properties. The results show both the significant and insignificant effects of DCT on individual properties of AISI 304L. Overall, solution annealing at a higher temperature (1080 °C) showed more prominent results in combination with DCT, which can be utilized for different manufacturing procedures of austenitic stainless steels for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA