Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(48): 14552-14561, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30411900

RESUMO

The adsorption of gas molecules at electrode-electrolyte interfaces is an important step in electrochemical reactions. Using molecular dynamics simulations, we investigate the adsorption of dissolved N2 in the electrical double layers (EDLs) of an aqueous electrolyte near planar and 1 nm radius spherical carbon electrodes. The adsorption of N2 is found to be overall enriched near neutral electrodes regardless of their surface curvature, although it can be locally enriched or depleted depending on the distance from the electrode surface. In comparison, the adsorption of N2 in the EDL near negatively charged electrodes is found to increase under a moderate surface charge density, but decrease under a high surface charge density, especially near a planar electrode. By analyzing the potential of mean force for dissolved N2, the solvent-induced effects are found to play important roles in influencing the adsorption of N2 in the EDLs. The adsorption behavior of N2 molecules, especially their dependence on the surface charge and curvature of electrodes, is further rationalized by examining the structure of interfacial water molecules, their interference with the hydration shell of N2, and their modification by the electrification of electrodes.

2.
Nanotechnology ; 27(12): 125302, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26890062

RESUMO

Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

3.
Phys Chem Chem Phys ; 17(12): 8266-75, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25733054

RESUMO

Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.

4.
J Am Chem Soc ; 135(3): 975-8, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23305294

RESUMO

Lithium-ion-conducting solid electrolytes hold promise for enabling high-energy battery chemistries and circumventing safety issues of conventional lithium batteries. Achieving the combination of high ionic conductivity and a broad electrochemical window in solid electrolytes is a grand challenge for the synthesis of battery materials. Herein we show an enhancement of the room-temperature lithium-ion conductivity by 3 orders of magnitude through the creation of nanostructured Li(3)PS(4). This material has a wide electrochemical window (5 V) and superior chemical stability against lithium metal. The nanoporous structure of Li(3)PS(4) reconciles two vital effects that enhance the ionic conductivity: (1) the reduction of the dimensions to a nanometer-sized framework stabilizes the high-conduction ß phase that occurs at elevated temperatures, and (2) the high surface-to-bulk ratio of nanoporous ß-Li(3)PS(4) promotes surface conduction. Manipulating the ionic conductivity of solid electrolytes has far-reaching implications for materials design and synthesis in a broad range of applications, including batteries, fuel cells, sensors, photovoltaic systems, and so forth.

5.
Phys Chem Chem Phys ; 15(44): 19496-509, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24129599

RESUMO

Structure-electrochemical property correlation is presented for lithium-manganese-rich layered-layered nickel manganese cobalt oxide (LMR-NMC) having composition Li1.2Co0.1Mn0.55Ni0.15O2 (TODA HE5050) in order to examine the possible reasons for voltage fade during short-to-mid-term electrochemical cycling. The Li1.2Co0.1Mn0.55Ni0.15O2 based cathodes were cycled at two different upper cutoff voltages (UCV), 4.2 V and 4.8 V, for 1, 10, and 125 cycles; voltage fade was observed after 10 and 125 cycles only when the UCV was 4.8 V. Magnetic susceptibility and selected-area electron diffraction data showed the presence of cation ordering in the pristine material, which remained after 125 cycles when the UCV was 4.2 V. When cycled at 4.8 V, the magnetic susceptibility results showed the suppression of cation ordering after one cycle; the cation ordering diminished upon further cycling and was not observed after 125 cycles. Selected-area electron diffraction data from oxides oriented towards the [0001] zone axis revealed a decrease in the intensity of cation-ordering reflections after one cycle and an introduction of spinel-type reflections after 10 cycles at 4.8 V; after 125 cycles, only the spinel-type reflections and the fundamental O3 layered oxide reflections were observed. A significant decrease in the effective magnetic moment of the compound after one cycle at 4.8 V indicated the presence of lithium and/or oxygen vacancies; analysis showed a reduction of Mn(4+) (high spin/low spin) in the pristine oxide to Mn(3+) (low spin) after one cycle. The effective magnetic moment was higher after 10 and 125 cycles at 4.8 V, suggesting the presence of Mn(3+) in a high spin state, which is believed to originate from distorted spinel (Li2Mn2O4) and/or spinel (LiMn2O4) compounds. The increase in effective magnetic moments was not observed when the oxide was cycled at 4.2 V, indicating the stability of the structure under these conditions. This study shows that structural rearrangements in the LMR-NMC oxide happen only at higher potentials (4.8 V, for example) and provides evidence of a direct correlation between cation ordering and voltage fade.

6.
J Ind Microbiol Biotechnol ; 40(11): 1263-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24005990

RESUMO

We report microbially facilitated synthesis of cadmium sulfide (CdS) nanostructured particles (NP) using anaerobic, metal-reducing Thermoanaerobacter sp. The extracellular CdS crystallites were <10 nm in size with yields of ~3 g/L of growth medium/month with demonstrated reproducibility and scalability up to 24 L. During synthesis, Thermoanaerobacter cultures reduced thiosulfate and sulfite salts to H2S, which reacted with Cd²âº cations to produce thermodynamically favored NP in a single step at 65 °C with catalytic nucleation on the cell surfaces. Photoluminescence (PL) analysis of dry CdS NP revealed an exciton-dominated PL peak at 440 nm, having a narrow full width at half maximum of 10 nm. A PL spectrum of CdS NP produced by dissimilatory sulfur reducing bacteria was dominated by features associated with radiative exciton relaxation at the surface. High reproducibility of CdS NP PL features important for scale-up conditions was confirmed from test tubes to 24 L batches at a small fraction of the manufacturing cost associated with conventional inorganic NP production processes.


Assuntos
Compostos de Cádmio/metabolismo , Espaço Extracelular/metabolismo , Nanoestruturas/química , Nanoestruturas/economia , Sulfetos/metabolismo , Thermoanaerobacter/metabolismo , Biomassa , Biotecnologia , Compostos de Cádmio/química , Compostos de Cádmio/economia , Catálise , Cristalização , Meios de Cultura , Fermentação , Medições Luminescentes , Nanotecnologia , Reprodutibilidade dos Testes , Análise Espectral , Sulfetos/química , Sulfetos/economia , Sulfitos/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Fatores de Tempo
7.
J Am Chem Soc ; 134(35): 14353-61, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22506925

RESUMO

The deterministic growth of oriented crystalline organic nanowires (CONs) from the vapor-solid chemical reaction (VSCR) between small-molecule reactants and metal nanoparticles has been demonstrated in several studies to date; however, the growth mechanism has not yet been conclusively understood. Here, the VSCR growth of M-TCNQF(4) (where M is Cu- or Ag-) nanowires is investigated both experimentally and theoretically with time-resolved, in situ X-ray diffraction (XRD) and first-principles atomistic calculations, respectively, to understand how metals (M) direct the assembly of small molecules into CONs, and what determines the selectivity of a metal for an organic vapor reactant in the growth process. Analysis of the real-time growth kinetics data using a modified Avrami model indicates that the formation of CONs from VSCR follows a one-dimensional ion diffusion-controlled tip growth mechanism wherein metal ions diffuse from a metal film through the nanowire to its tip where they react with small molecules to continue growth. The experimental data and theoretical calculations indicate that the selectivity of different metals to induce nanowire growth depends strongly upon effective charge transfer between the organic molecules and the metal. Specifically, the experimental finding that Cu ions can exchange and replace Ag ions in Ag-TCNQF(4) to form Cu-TCNQF(4) nanowires is explained by the significantly stronger chemical bond between Cu and TCNQF(4) molecules than for Ag, due to the strong electronic contribution of Cu d-orbitals near the Fermi level. Understanding how to control the VSCR growth process may enable the synthesis of novel organic nanowires with axial or coaxial p/n junctions for organic nanoelectronics and solar energy harvesting.

8.
Bioconjug Chem ; 22(4): 766-76, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21434681

RESUMO

Nanoscale materials have been envisioned as carriers for various therapeutic drugs, including radioisotopes. Inorganic nanoparticles (NPs) are particularly appealing vehicles for targeted radiotherapy because they can package several radioactive atoms into a single carrier and can potentially retain daughter radioisotopes produced by in vivo generators such as actinium-225 ((225)Ac, t(1/2) = 10 d). Decay of this radioisotope to stable bismuth-209 proceeds through a chain of short-lived daughters accompanied by the emission of four α-particles that release >27 MeV of energy. The challenge in realizing the enhanced cytotoxic potential of in vivo generators lies in retaining the daughter nuclei at the therapy site. When (225)Ac is attached to targeting agents via standard chelate conjugation methods, all of the daughter radionuclides are released after the initial α-decay occurs. In this work, (225)Ac was incorporated into lanthanum phosphate NPs to determine whether the radioisotope and its daughters would be retained within the dense mineral lattice. Further, the (225)Ac-doped NPs were conjugated to the monoclonal antibody mAb 201B, which targets mouse lung endothelium through the vasculature, to ascertain the targeting efficacy and in vivo retention of radioisotopes. Standard biodistribution techniques and microSPECT/CT imaging of (225)Ac as well as the daughter radioisotopes showed that the NPs accumulated rapidly in mouse lung after intravenous injection. By showing that excess, competing, uncoupled antibodies or NPs coupled to control mAbs are deposited primarily in the liver and spleen, specific targeting of NP-mAb 201B conjugates was demonstrated. Biodistribution analysis showed that ∼30% of the total injected dose of La((225)Ac)PO(4) NPs accumulated in mouse lungs 1 h postinjection, yielding a value of % ID/g >200. Furthermore, after 24 h, 80% of the (213)Bi daughter produced from (225)Ac decay was retained within the target organ and (213)Bi retention increased to ∼87% at 120 h. In vitro analyses, conducted over a 1 month interval, demonstrated that ∼50% of the daughters were retained within the La((225)Ac)PO(4) NPs at any point over that time frame. Although most of the γ-rays from radionuclides in the (225)Ac decay chain are too energetic to be captured efficiently by SPECT detectors, appropriate energy windows were found that provided dramatic microSPECT images of the NP distribution in vivo. We conclude that La((225)Ac)PO(4)-mAb 201B conjugates can be targeted efficiently to mouse lung while partially retaining daughter products and that targeting can be monitored by biodistribution techniques and microSPECT imaging.


Assuntos
Actínio/química , Anticorpos Monoclonais/química , Lantânio/química , Nanopartículas/química , Fosfatos/química , Actínio/administração & dosagem , Actínio/farmacocinética , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/farmacocinética , Endotélio/química , Feminino , Lantânio/administração & dosagem , Lantânio/farmacocinética , Pulmão/química , Pulmão/citologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Fosfatos/administração & dosagem , Fosfatos/farmacocinética , Radioisótopos/química , Radioisótopos/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
9.
J Nanosci Nanotechnol ; 10(12): 8298-306, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121331

RESUMO

Average crystallite sizes of microbially synthesized pure, metal-, and lanthanide-substituted magnetite (bio-magnetite) were determined for a variety of incubation times and temperatures, substitutional elements and amounts, bacterial species, and precursor types. The intriguing difference between nanoparticle bio-magnetite and chemically synthesized magnetite (chem-magnetite) was that powder X-ray diffraction (XRD) data showed that the bio-magnetite exhibited slightly smaller lattice parameters, however, Raman Spectroscopy exhibited no difference in Fe-O bonding. These results indicate that bio-magnetite likely exhibits a more compact crystal structure with less uncoordinated iron on the surface suppressing negative pressure effects. The bio-magnetite with decreased lattice parameters could have potential technological advantages over current commercial chemically synthesized magnetites.


Assuntos
Óxido Ferroso-Férrico/química , Nanopartículas de Magnetita/química , Óxido Ferroso-Férrico/metabolismo , Nanopartículas de Magnetita/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Shewanella/metabolismo , Análise Espectral Raman , Thermoanaerobacter/metabolismo , Difração de Raios X
10.
J Ind Microbiol Biotechnol ; 37(10): 1023-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20544257

RESUMO

Production of both nano-sized particles of crystalline pure phase magnetite and magnetite substituted with Co, Ni, Cr, Mn, Zn or the rare earths for some of the Fe has been demonstrated using microbial processes. This microbial production of magnetic nanoparticles can be achieved in large quantities and at low cost. In these experiments, over 1 kg (wet weight) of Zn-substituted magnetite (nominal composition of Zn(0.6)Fe(2.4)O4) was recovered from 30 l fermentations. Transmission electron microscopy (TEM) was used to confirm that the extracellular magnetites exhibited good mono-dispersity. TEM results also showed a highly reproducible particle size and corroborated average crystallite size (ACS) of 13.1 ± 0.8 nm determined through X-ray diffraction (N = 7) at a 99% confidence level. Based on scale-up experiments performed using a 35-l reactor, the increase in ACS reproducibility may be attributed to a combination of factors including an increase of electron donor input, availability of divalent substitution metal ions and fewer ferrous ions in the case of substituted magnetite, and increased reactor volume overcoming differences in each batch. Commercial nanometer sized magnetite (25-50 nm) may cost $500/kg. However, microbial processes are potentially capable of producing 5-90 nm pure or substituted magnetites at a fraction of the cost of traditional chemical synthesis. While there are numerous approaches for the synthesis of nanoparticles, bacterial fermentation of magnetite or metal-substituted magnetite may represent an advantageous manufacturing technology with respect to yield, reproducibility and scalable synthesis with low costs at low energy input.


Assuntos
Bactérias/metabolismo , Biotecnologia/métodos , Nanopartículas de Magnetita/química , Zinco/metabolismo , Reatores Biológicos , Cristalografia por Raios X , Fermentação , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão
11.
ACS Nano ; 13(10): 12109-12119, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31592639

RESUMO

Inspired by recent reports on possible proton conductance through graphene, we have investigated the behavior of pristine graphene and defect engineered graphene membranes for ionic conductance and selectivity with the goal of evaluating a possibility of its application as a proton selective membrane. The averaged conductance for pristine chemical vapor deposited (CVD) graphene at pH1 is ∼4 mS/cm2 but varies strongly due to contributions from the unavoidable defects in our CVD graphene. From the variations in the conductance with electrolyte strength and pH, we can conclude that pristine graphene is fairly selective and the conductance is mainly due to protons. Engineering of the defects with ion beam (He+, Ga+) irradiation and plasma (N2 and H2) treatment showed improved areal conductance with high proton selectivity mostly for He-ion beam and H2 plasma treatments, which agrees with primarily vacancy-free type of defects produced in these cases confirmed by Raman analysis.

12.
Nanoscale ; 11(20): 9856-9861, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31089608

RESUMO

With the ability to selectively control ionic flux, biological protein ion channels perform a fundamental role in many physiological processes. For practical applications that require the functionality of a biological ion channel, graphene provides a promising solid-state alternative, due to its atomic thinness and mechanical strength. Here, we demonstrate that nanopores introduced into graphene membranes, as large as 50 nm in diameter, exhibit inter-cation selectivity with a ∼20× preference for K+ over divalent cations and can be modulated by an applied gate voltage. Liquid atomic force microscopy of the graphene devices reveals surface nanobubbles near the pore to be responsible for the observed selective behavior. Molecular dynamics simulations indicate that translocation of ions across the pore likely occurs via a thin water layer at the edge of the pore and the nanobubble. Our results demonstrate a significant improvement in the inter-cation selectivity displayed by a solid-state nanopore device and by utilizing the pores in a de-wetted state, offers an approach to fabricate selective graphene membranes that does not rely on the fabrication of sub-nm pores.

13.
Nucl Med Biol ; 35(4): 501-14, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18482688

RESUMO

INTRODUCTION: Nanoparticles (NP) have potential as carriers for drugs and radioisotopes. Quantitative measures of NP biodistribution in vivo are needed to determine the effectiveness of these carriers. We have used a model system of radiolabeled quantum dots to document the competition between efficient vascular targeting and interaction of the NP with the reticuloendothelial (RE) system. METHODS: We have prepared (125m)Te-labeled CdTe NP that are capped with ZnS. Te-125m has a half-life and decay characteristics very similar to those for (125)I. The synthesized particles are stable in aqueous solution and are derivatized with mercaptoacetic acid and then conjugated with specific antibody. To evaluate specific targeting, we used the monoclonal antibody MAb 201B that binds to murine thrombomodulin expressed in the lumen of lung blood vessels. The MAb-targeted NP were tested for targeting performance in vivo using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging, tissue autoradiography and standard organ biodistribution techniques. Biodistribution was also determined in mice that had been depleted of phagocytic cells by use of clodronate-loaded liposomes. RESULTS: Cd(125m)Te/ZnS NP coupled with MAb 201B retained radioisotope and antibody activity and accumulated in lung (>400% injected dose [ID]/g) within 1 h of intravenous injection. Control antibody-coupled NP did not accumulate in lung (<10% ID/g) but accumulated in liver and spleen. Images from microSPECT/CT and autoradiography studies of the targeted NP document this specific uptake and demonstrate uniform distribution in lung with minor accumulation in liver and spleen. Within a few hours, a large fraction of lung-targeted NP redistributed to spleen and liver or was excreted. We hypothesized that NP attract phagocytic cells that engulfed and removed them from circulation. This was confirmed by comparing biodistribution of targeted NP in normal mice versus those depleted of phagocytic cells. In mice treated with clodronate liposomes, accumulation of NP in liver was reduced by fivefold, while accumulation in lung at 1 h was enhanced by approximately 50%. By 24 h, loss of the targeted NP from lung was inhibited by several-fold, while accumulation in liver and spleen remained constant. Thus, the treated mice had a much larger accumulation and retention of the NP at the target site and a decrease in dose to other organs except spleen. CONCLUSION: Nanoparticles composed of CdTe, labeled with (125m)Te and capped with ZnS, can be targeted with MAb to sites in the lumen of lung vasculature. In clodronate-treated mice, which have a temporary depletion of phagocytic cells, accumulation in liver was reduced dramatically, whereas that in spleen was not. The targeting to lung was several-fold more efficient in clodronate-treated mice due to larger initial accumulation and better retention of the MAb-targeted NP at that site. This model system indicates that targeting of NP preparations is a competition between the effectiveness of the targeting agent and the natural tendency for RE uptake of the particles. Temporary inhibition of the RE system may enhance the usefulness of NP for drug and radioisotope delivery.


Assuntos
Anticorpos Monoclonais/farmacocinética , Vasos Sanguíneos/imunologia , Pulmão/diagnóstico por imagem , Nanopartículas/administração & dosagem , Telúrio/farmacocinética , Animais , Anticorpos Monoclonais/química , Autorradiografia , Compostos de Cádmio/síntese química , Compostos de Cádmio/farmacocinética , Ácido Clodrônico/farmacologia , Composição de Medicamentos , Estabilidade de Medicamentos , Feminino , Pulmão/irrigação sanguínea , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Radioimunodetecção , Radioisótopos/química , Radioisótopos/farmacocinética , Angiografia Cintilográfica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Telúrio/química , Trombomodulina/análise , Trombomodulina/imunologia , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Sulfato de Zinco/farmacologia
14.
Sci Rep ; 8(1): 3099, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449637

RESUMO

Diopside is a common natural pyroxene that is rarely found in a pure state, since magnesium is often partially substituted by iron, and other elements (sodium and aluminum) are often present. This pyroxene, along with feldspars and olivines, is common in concrete. As the prospective license renewal of light water reactors to 80 years of operation has raised concerns on the effects of radiation in the concrete biological shield surrounding the reactors, mineral nanoparticles can be valuable to perform amorphization studies to inform predictive models of mechanical properties of irradiated concrete. The synthesis of diopside nanoparticles was achieved in this study using a reverse-micelle sol-gel method employing TEOS, calcium chloride and Mg(MeO)2 in a methanol/toluene solution. Tert-butylamine and water were used as hydrolysis agents, and dodecylamine as a surfactant. The resulting amorphous precursor was centrifuged to remove organics and fired at 800 °C. Additional reaction with hydrogen peroxide was used to remove amine remnants. TEM and SEM examinations revealed a product comprised of 50-100 nm diameter nanoparticles. XRD indicated phase pure diopside and BET indicated a surface area of 63.5 m2/g before peroxide treatment, which at a bulk density of 3.4 g/cm3 is equivalent to particles with diameter of 28 nm.

15.
Sci Rep ; 8(1): 6430, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29666395

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Mater Sci Eng C Mater Biol Appl ; 93: 931-943, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274130

RESUMO

The development of dental adhesive resins with long-lasting antibacterial properties is a possible solution to overcome the problem of secondary caries in modern adhesive dentistry. OBJECTIVES: (i) Synthesis and characterization of nitrogen-doped titanium dioxide nanoparticles (N_TiO2), (ii) topographical, compositional and wettability characterization of thin-films (unaltered and experimental) and, (iii) antibacterial efficacy of N_TiO2-containing dental adhesives against Streptococcus mutans biofilms. MATERIALS AND METHODS: Nanoparticles were synthesized and characterized using different techniques. Specimens (diameter = 12 mm, thickness ≅ 15 µm) of OptiBond Solo Plus (Kerr Corp., USA) and experimental adhesives [50, 67 and 80% (v/v)] were fabricated, photopolymerized (1000 mW/cm2, 1 min) and UV-sterilized (254 nm, 800,000 µJ/cm2) for microscopy, spectroscopy, wettability and antibacterial testing. Wettability was assessed with a contact angle goniometer by dispensing water droplets (2 µL) onto four random locations of each specimen (16 drops/group). Drop profiles were recorded (1 min, 25 frames/s, 37 °C) and contact angles were calculated at time = 0 s (θINITIAL) and time = 59 s (θFINAL). Antibacterial testing was performed by growing S. mutans (UA159-ldh, JM10) biofilms for either 3 or 24 h (anaerobic conditions, 37 °C) with or without continuous light irradiation (410 ±â€¯10 nm, 3 h = 38.75 J/cm2, 24 h = 310.07 J/cm2) against the surfaces of sterile specimens. RESULTS: N_TiO2 was successfully prepared using solvothermal methods. Doped-nanoparticles displayed higher light absorption levels when compared to undoped titania. Experimental adhesives demonstrated superior antibacterial efficacy in dark conditions. CONCLUSIONS: The findings presented herein suggest that N_TiO2 is a feasible antibacterial agent against cariogenic biofilms.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Cimentos Dentários , Nanopartículas/química , Nitrogênio , Streptococcus mutans/fisiologia , Titânio , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Nitrogênio/química , Nitrogênio/farmacologia , Titânio/química , Titânio/farmacologia
17.
Sci Adv ; 4(4): e1700336, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29719860

RESUMO

Ammonia synthesis consumes 3 to 5% of the world's natural gas, making it a significant contributor to greenhouse gas emissions. Strategies for synthesizing ammonia that are not dependent on the energy-intensive and methane-based Haber-Bosch process are critically important for reducing global energy consumption and minimizing climate change. Motivated by a need to investigate novel nitrogen fixation mechanisms, we herein describe a highly textured physical catalyst, composed of N-doped carbon nanospikes, that electrochemically reduces dissolved N2 gas to ammonia in an aqueous electrolyte under ambient conditions. The Faradaic efficiency (FE) achieves 11.56 ± 0.85% at -1.19 V versus the reversible hydrogen electrode, and the maximum production rate is 97.18 ± 7.13 µg hour-1 cm-2. The catalyst contains no noble or rare metals but rather has a surface composed of sharp spikes, which concentrates the electric field at the tips, thereby promoting the electroreduction of dissolved N2 molecules near the electrode. The choice of electrolyte is also critically important because the reaction rate is dependent on the counterion type, suggesting a role in enhancing the electric field at the sharp spikes and increasing N2 concentration within the Stern layer. The energy efficiency of the reaction is estimated to be 5.25% at the current FE of 11.56%.

18.
J Colloid Interface Sci ; 306(2): 281-4, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17126851

RESUMO

CdWO4 has only previously been reported in the monoclinic, or wolframite, phase. Here we report the first metastable, tetragonal or scheelite, CdWO4 nanopowder. The tetragonal CdWO4 was synthesized by a propylene glycol solvothermal method. The scheelite phase is stabilized by a combination of high surface area and surface complexation by the propylene glycol. The CdWO4 is stable at 1 bar to 300 degrees C, and converts back to the monoclinic wolframite phase between 300 and 500 degrees C. The nanopowder exhibits cubic morphology and the average particle size of the nanopowder is around 50 nm.

19.
J Colloid Interface Sci ; 495: 94-101, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189114

RESUMO

Olivine is a relatively common family of silicate minerals in many terrestrial and extraterrestrial environments, and is also useful as a refractory ceramic. A capability to synthesize fine particles of olivine will enable additional studies on surface reactivity under geologically relevant conditions. This paper presents a method for the synthesis of nanocrystalline samples of the magnesium end-member, forsterite (Mg2SiO4) in relatively large batches (15-20g) using a sol-gel/surfactant approach. Magnesium methoxide and tetraethylorthosilicate (TEOS) are refluxed in a toluene/methanol mixture using dodecylamine as a surfactant and tert-butyl amine and water as hydrolysis agents. This material is then cleaned and dried, and fired at 800°C. Post-firing reaction in hydrogen peroxide was used to remove residual organic surfactant. X-ray diffraction showed that a pure material resulted, with a BET surface area of up to 76.6m2/g. The results of a preliminary attempt to use this approach to synthesize nano-scale orthopyroxene (MgSiO3) are also reported.

20.
J Phys Chem B ; 110(39): 19456-60, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004805

RESUMO

Ordered three-dimensional (3-D) assemblies of nanocrystalline zirconia were synthesized from aqueous suspensions of ZrO(2) nanoparticles without the need for hydrocarbon surfactants or solvents to control colloidal crystal growth. Nanoparticles were suspended in mild acid and subsequently titrated from low to neutral pH. The solubility was reduced as the surfaces were neutralized, promoting assembly of the nanoparticles into ordered monoliths. TEM measurements indicated the formation of three-dimensional, hexagonal faceted, micrometer-sized colloidal crystals composed of 4 nm diameter ZrO(2) nanoparticles. Lacking organic surfactants, the colloidal crystals were exceptionally robust and were sintered at high temperatures (300-500 degrees C) for further stability. Small-angle X-ray scattering (SAXS) measurements demonstrate that the samples become progressively more amorphous above 350 degrees C, although some ordered domains of nanoparticles persist. Additionally, the heat treatment dramatically increases the surface area of the colloidal crystals as water and residual organics are desorbed, revealing highly controlled interstitial spaces and pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA