Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Mol Med ; 25(19): 9411-9426, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453479

RESUMO

KCTD11 has been reported to be a potential tumour suppressor in several tumour types. However, the expression of KCTD11 and its role has not been reported in human non-small cell lung cancer (NSCLC). Whether its potential molecular mechanism is related to its BTB domain is also unknown. The expression of KCTD11 in 139 NSCLC tissue samples was detected by immunohistochemistry, and its correlation with clinicopathological factors was analysed. The effect of KCTD11 on the biological behaviour of lung cancer cells was verified in vitro and in vivo. Its effect on the epithelial-mesenchymal transition(EMT)process and the Wnt/ß-catenin and Hippo/YAP pathways were observed by Western blot, dual-luciferase assay, RT-qPCR, immunofluorescence and immunoprecipitation. KCTD11 is under-expressed in lung cancer tissues and cells and was negatively correlated with the degree of differentiation, tumour-node-metastasis (TNM) stage and lymph node metastasis. Low KCTD11 expression was associated with poor prognosis. KCTD11 overexpression inhibited the proliferation and migration of lung cancer cells. Further studies indicated that KCTD11 inhibited the Wnt pathway, activated the Hippo pathway and inhibited EMT processes by inhibiting the nuclear translocation of ß-catenin and YAP. KCTD11 lost its stimulatory effect on the Hippo pathway after knock down of ß-catenin. These findings confirm that KCTD11 inhibits ß-catenin and YAP nuclear translocation as well as the malignant phenotype of lung cancer cells by interacting with ß-catenin. This provides an important experimental basis for the interaction between KCTD11, ß-catenin and YAP, further revealing the link between the Wnt and Hippo pathways.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Via de Sinalização Hippo , Neoplasias Pulmonares/metabolismo , Transferases/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Adulto , Idoso , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Fosforilação , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Fatores de Transcrição/metabolismo , Transferases/química , Transferases/genética
2.
Lab Invest ; 99(2): 169-179, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401956

RESUMO

The roles and downstream target genes of the transcription factor ZNF326 in malignant tumors are unclear. Out of 146 lung cancer tissue samples, we found that high expression of ZNF326 in 82 samples was closely related to low differentiation and a high pTNM stage of non-small cell lung cancer (NSCLC) cells. In vitro and in vivo analyses showed that ZNF326 significantly promoted cell cycle progression, colony formation, and proliferation as well as the growth of NSCLC transplanted tumors. Chromatin immunoprecipitation sequencing, dual-luciferase assay, and electrophoretic mobility shift assay confirmed that the C2H2 structure of ZNF326 binds to the -833 to -875 bp region of the ERCC1 promoter to initiate transcriptional activity. This binding promoted CyclinB1 synthesis and cell cycle progression. These results show that the ZNF326 transcription factor is highly expressed in lung cancer and promotes the proliferation of NSCLC cells by regulating the expression of ERCC1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Mol Carcinog ; 58(7): 1168-1180, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30834575

RESUMO

Ras-association domain family (RASSF) proteins exert distinct cellular functions. The expression of RASSF10 in non-small cell lung cancer and its underlying mechanism have not been reported. Herein, we explored the roles of RASSF10 in lung cancer cells and potential molecular mechanisms. We found low RASSF10 expression in lung cancer specimens, which was associated with low differentiation, advanced pTNM stage, positive lymph node metastasis, and poor prognosis in patients. Furthermore, RASSF10 overexpression inhibited the proliferation and invasion of lung cancer cells, which was the result of Wnt signaling suppression. However, we found that RASSF10 had no influence on Hippo signaling, while RASSF10 bound to LRP6 via the coiled-coil domains and reduced p-LRP6 level, eventually prohibiting ß-catenin nuclear translocation. However, deleting the coiled-coil domains ablated this function. These findings expound the interaction between RASSF10 and LRP6 and uncover a potential link between N-terminal RASSFs and the Wnt pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt/genética , Células A549 , Transporte Ativo do Núcleo Celular/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Fosforilação/genética , Prognóstico , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/metabolismo , beta Catenina/metabolismo
4.
Mol Carcinog ; 58(1): 126-134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242906

RESUMO

Coiled-coil domain containing 85 B (CCDC85B) is involved in diverse biological processes; however, its expression patterns and functions in human cancers are yet unknown. The present study demonstrated that the expression of CCDC85B in the cytoplasm of the non-small cell lung cancer (NSCLC) tumor cells was significantly higher compared to adjacent normal lung tissues (P < 0.05). Furthermore, CCDC85B expression correlated with advanced TNM stage (P = 0.004) and positive regional lymph node metastasis (P = 0.009) of NSCLC. In addition, in A549 and H1299 lung cancer cell lines, the overexpression of CCDC85B promoted cell proliferation and invasion, while siRNA-mediated CCDC85B knockdown exhibited opposite effects. CCDC85B promoted AKT and GSK3ß phosphorylation and upregulated the levels of active ß-catenin, Wnt targets c-myc, cyclin D1, and MMP7. Besides, the CCDC85B-induced upregulation of phosphorylated GSK3ß and active ß-catenin was rescued following the treatment with PI3 K inhibitor, LY294002. In conclusion, CCDC85B was associated with NSCLC progression as it promoted the proliferation and invasion of lung cancer cells through activated AKT/GSK3ß/ß-catenin oncogenic signaling pathway. Therefore, CCDC85B might serve as a novel target for NSCLC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/secundário , Carcinoma de Células Grandes/secundário , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/secundário , Proliferação de Células , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Adenocarcinoma/metabolismo , Apoptose , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Grandes/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Estudos de Casos e Controles , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Transdução de Sinais , Células Tumorais Cultivadas
5.
J Pathol ; 242(4): 435-447, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28543074

RESUMO

The scaffolding protein WWC (WW and C2-domain containing) family is known to regulate cell proliferation and organ size via the Hippo signalling pathway. However, the expression level of WWC3 in human tumours and the mechanisms underlying its role in cellular signal transduction have not yet been reported. Herein, we explored the potential roles of WWC3 in lung cancer cells and the corresponding molecular mechanisms. We found low WWC3 expression in both lung cancer cell lines and lung cancer specimens, which was associated with low differentiation, advanced pTNM stage, positive lymph node metastasis, and poor prognosis in patients with lung cancer. Moreover, the overexpression of WWC3 inhibited the proliferation and invasiveness of lung cancer cells. These effects were mediated by the inhibition and stimulation of the Wnt and Hippo pathways, respectively, in vitro and in vivo. Specifically, WWC3 interacts with Dishevelled (Dvl) proteins, prevents casein kinase 1ϵ from phosphorylating Dvls, and inhibits ß-catenin nuclear translocation to inhibit the Wnt pathway. Deleting the WW and C-terminal PDZ-binding domains of WWC3 abrogated these effects. Moreover, the interaction of WWC3 with Dvls reduced the interaction between WWC3 and large tumour suppressor 1 (LATS1), as well as decreasing LATS1 phosphorylation to increase the nuclear importation of yes-associated protein (YAP) and attenuate the Hippo pathway. Deleting the WW domain of WWC3 abrogated this effect. These findings demonstrate the molecular interplay between WWC3, Dvls, and LATS1, and reveal a link between the Wnt and Hippo pathways, which provides a potential target for clinical intervention in lung cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Desgrenhadas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Via de Sinalização Wnt/fisiologia , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Proliferação de Células/efeitos dos fármacos , Feminino , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/farmacologia , Proteínas de Neoplasias/fisiologia , Estadiamento de Neoplasias , Prognóstico , Células Tumorais Cultivadas
6.
Oncol Rep ; 49(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36896765

RESUMO

Non­small cell lung cancer (NSCLC) accounts for the majority of lung cancers and remains the most common cause of cancer­related death. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR­TKIs) have been used as first­line treatment for patients with NSCLC showing EGFR mutations. Unfortunately, drug resistance is a crucial barrier affecting the treatment of patients with NSCLC. Thyroid hormone receptor interactor 13 (TRIP13) is an ATPase that is overexpressed in numerous tumors and is involved in drug resistance. However, whether TRIP13 plays a role in regulating sensitivity to EGFR­TKIs in NSCLC remains unknown. TRIP13 expression was evaluated in gefitinib­sensitive (HCC827) and ­resistant (HCC827GR and H1975) cell lines. The effect of TRIP13 on gefitinib sensitivity was assessed using the MTS assay. The expression of TRIP13 was upregulated or knocked down to determine its effect on cell growth, colony formation, apoptosis and autophagy. Additionally, the regulatory mechanism of TRIP13 on EGFR and its downstream pathways in NSCLC cells were examined using western blotting, immunofluorescence and co­immunoprecipitation assays. The expression levels of TRIP13 were significantly higher in gefitinib­resistant than in gefitinib­sensitive NSCLC cells. TRIP13 upregulation enhanced cell proliferation and colony formation while reducing the apoptosis of gefitinib­resistant NSCLC cells, suggesting that TRIP13 may facilitate gefitinib resistance in NSCLC cells. In addition, TRIP13 improved autophagy to desensitize gefitinib in NSCLC cells. Furthermore, TRIP13 interacted with EGFR and induced its phosphorylation and downstream pathways in NSCLC cells. The present study demonstrated that TRIP13 overexpression promotes gefitinib resistance in NSCLC by regulating autophagy and activating the EGFR signaling pathway. Thus, TRIP13 could be used as a biomarker and therapeutic target for gefitinib resistance in NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fosforilação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Receptores ErbB/metabolismo , Autofagia , Linhagem Celular Tumoral , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
7.
Cell Death Dis ; 13(10): 858, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209201

RESUMO

PLEKHH2 is an important FERM domain containing-protein. However, the role of PLEKHH2 in human solid tumors has not been reported yet. We report that PLEKHH2 showed enhanced cytoplasmic expression in non-small cell lung cancer (NSCLC). Its overexpression was positively correlated with high TNM stage, low differentiation, lymphatic node metastasis, and poor prognosis. In A549 and H1299 cells, high expression of PLEKHH2 significantly promoted cell proliferation, migration, invasion, and increased the expression of proliferation- and invasion-related proteins. It also enhanced the phosphorylation of FAK and promoted the activity of the PI3K/AKT pathway. Immunofluorescence and co-immunoprecipitation analyses were performed to elucidate the molecular mechanism underlying PLEKHH2-mediated regulation of proliferation and invasion in lung cancer cells. Upon transfection of full length PLEKHH2 or its FERM domain, we observed enhanced binding of PLEKHH2 to ß-arrestin1, whereas FAK- ß-arrestin1 binding was diminished and this led to an increase in FAK phosphorylation. PLEKHH2-mutant plasmids without the FERM domain could not effectively promote its binding to ß-arrestin1, activation of FAK phosphorylation, PI3K/AKT activation, or the malignant phenotype. Our findings suggested that PLEKHH2 is an important oncogene in NSCLC. PLEKHH2 binding to ß-arrestin1 through the FERM domain competitively inhibits ß-arrestin1 binding to FAK, which causes the dissociation of FAK from the FAK-ß-arrestin1 complex. Furthermore, the dissociation of FAK promotes its autophosphorylation, activates the PI3K/AKT signaling pathway, and subsequently promotes lung cancer cell proliferation, migration, and invasion. These results provide evidence for the potential use of PLEKHH2 inhibition as an anticancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , beta-Arrestinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Appl Immunohistochem Mol Morphol ; 30(3): 215-224, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030104

RESUMO

Our previous studies indicate that resistance induction using first-generation tyrosine kinase inhibitors (TKIs) in lung cancer is accompanied with p120-catenin (p120ctn) cytoplasmic translocation from the membrane. However, the molecular mechanism underlying p120ctn intracytoplasmic translocation has not yet been reported. We performed immunohistochemistry to detect the correlation of p120ctn distribution with protein tyrosine phosphatase non-receptor type 12 (PTP-PEST) and p120ctn Y335 phosphorylation levels in non-small cell lung cancer (NSCLC) patients. After resistance induction using first-generation TKIs in lung cancer cells, Western blotting and substrate trapping were used to assess PTP-PEST expression and its influence on p120ctn Y335 phosphorylation, as well as the role of p120ctn Y335 phosphorylation on the association of p120ctn with E-cadherin and p120ctn membrane/cytoplasm translocation. In 197 samples collected from NSCLC patients, cytoplasmic p120ctn and enhanced p120ctn Y335 phosphorylation were associated with decreased PTP-PEST. After resistance induction using gefitinib, decreased PTP-PEST expression was accompanied by enhanced phosphorylation of p120ctn Y335 and p120ctn translocated to the cytoplasm. In gefitinib-resistant cells, PTP-PEST overexpression restrained p120ctn Y335 phosphorylation and restored membrane p120ctn expression. PTP-PEST enhanced the interaction of p120ctn with E-cadherin and elevated p120ctn membrane expression. However, increased p120ctn-Y335F mutant had no effect on p120ctn interaction with E-cadherin and membrane/cytoplasm translocation compared with the control group. In conclusion, resistance to first-generation TKIs inhibited PTP-PEST expression, which promoted p120ctn-Y335 phosphorylation and reduced the interaction of p120ctn with E-cadherin, resulting in p120ctn cytoplasmic translocation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cateninas , Citoplasma/metabolismo , Gefitinibe/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , delta Catenina
9.
Cell Death Dis ; 12(4): 384, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837178

RESUMO

WW domain binding protein-2 (WBP2) can function as a Yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) co-activator and has a crucial role in promoting breast cancer progression. However, the expression and potential molecular mechanisms of WBP2 in the context of lung cancer are not fully understood. We determined that WBP2 was highly expressed in lung cancer specimens and cell lines and that this expression was closely related to the advanced pTNM stage, lymph node metastasis, and poor prognosis of patients. In addition, gain- and loss-of-function experiments revealed that WBP2 could significantly promote the proliferation and invasion of lung cancer cells both in vivo and in vitro. To elucidate the underlying molecular mechanism, we determined that wild-type WBP2 could competitively bind to the WW domain of WWC3 (WW and C2 domain-containing-3) with LATS1 (Large tumor suppressor-1) through its PPxY motifs, thus inhibiting the formation of the WWC3-LATS1 complex, reducing the phosphorylation level of LATS1, suppressing the activity of the Hippo pathway, and ultimately promoting YAP nuclear translocation. Therefore, from the aspect of upstream molecules of Hippo signaling, WBP2 promotes the malignant phenotype of lung cancer cells in a unique manner that is not directly dependent upon YAP, thus providing a corresponding experimental basis for the development of targeted therapeutic drugs for lung cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Feminino , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus
10.
J Thorac Dis ; 12(8): 4205-4215, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32944332

RESUMO

BACKGROUND: WW and C2 domain-containing protein-3 (WWC3) was identified in our previous studies as a tumor suppressor gene, which inhibits the proliferation and invasiveness of lung cancer cells. However, the relationship between WWC3 and autophagy and apoptosis in lung cancer cells is unclear. In this study, we aimed to investigate the potential role of WWC3 in starvation-induced autophagy and apoptosis in non-small cell lung carcinoma (NSCLC) cells. METHODS: The immunoblotting assay and quantitative real-time polymerase chain reaction (RT-qPCR) were used for observing the change of WWC3 protein and mRNA level under starvation condition. The immunoblotting assay and immunofluorescence assay were performed to detect the impact of WWC3 expression on autophagy process induced by Earle's balanced salt solution (EBSS) in lung cancer cells; APC/propidium iodide (PI) apoptosis assay, caspase-3/7 activity assay and MTT assay were used for the apoptosis and proliferation detection of lung cancer cells. RESULTS: After starvation had been induced with EBSS, WWC3 expression was significantly decreased in the NSCLC cells. Ectopic WWC3 expression weakened the autophagy process in a Beclin1-independent manner and promoted non-small cell lung cancer cell apoptosis via EBSS starvation. Moreover, the inhibition of WWC3 gene knockout was weakened by 3-methyladenine (3-MA), an autophagy inhibitor. CONCLUSIONS: These results indicate that WWC3 promotes apoptosis and death of starved lung cancer cells, at least partly through autophagy.

11.
Cell Signal ; 66: 109462, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31689506

RESUMO

Lung adenocarcinoma is the most common subtype of non-small-cell lung cancer affecting people all over the globe. Recent studies have indicated that long non-coding RNAs (lncRNAs) possess the ability to regulate gene expression. Initially, we uncovered increased LINC00355 expressions in lung adenocarcinoma tissues and cells. Functionally, our findings demonstrated that LINC00355 silencing suppressed the proliferation in vitro and in vivo. In addition, we found that LINC00355 negatively regulated miR-195 in lung adenocarcinoma cells. Simultaneously, silencing LINC00355 by shRNA resulted in suppressed proliferation, colony formation and promoted cell cycle arrest and apoptosis via miR-195. Moreover, silencing LINC00355 by shRNA inhibited the cyclin E1 (CCNE1) gene expression via miR-195 in lung adenocarcinoma cells. Collectively, this study demonstrates the novel lncRNA LINC00355 in regulatory network of CCNE1 via miR-195 in lung adenocarcinoma, highlighting LINC00355 as a new target for the treatment of lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Ciclina E/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteínas Oncogênicas/metabolismo , RNA Longo não Codificante/metabolismo , Adenocarcinoma de Pulmão/genética , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Nus
12.
Int J Oncol ; 56(5): 1175-1185, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32319569

RESUMO

The ankyrin repeat and KH domain­containing 1 (ANKHD1) protein was recently reported to be a potential member of the Hippo signaling pathway. However, its role in human non­small­cell lung cancer (NSCLC) has not been extensively investigated. The aim of the present study was to examine the expression of ANKHD1 in primary human tissues and cells and determine whether it is correlated with the clinical characteristics of tumor growth. The biological functions of ANKHD1 were evaluated in vitro and in vivo. Yes­associated protein (YAP) expression and phosphorylation induced by ANKHD1 were evaluated by western blotting and immunoprecipitation. Marked upregulation of ANKHD1 protein expression was observed in NSCLC cells and tissues, which was associated with advanced pathological tumor­node­metastasis stage, lymph node metastasis and poor prognosis in patients with NSCLC. ANKHD1 overexpression also promoted the proliferation and invasion of NSCLC cells. ANKHD1 upregulation inactivated Hippo signaling via increasing YAP protein levels, as well as inhibiting YAP protein phosphorylation, whereas depletion of YAP abolished the effects of ANKHD1 on cell proliferation and invasion. Therefore, ANKHD1 may play an important role in NSCLC through regulating the YAP­dependent Hippo signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Masculino , Camundongos , Invasividade Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Fosforilação , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
13.
Cancer Manag Res ; 11: 3395-3410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114375

RESUMO

Purpose: The expression of FERM-domain-containing protein-1 (FRMPD1)/FERM and PDZ domain-containing protein-2 (FRMD2) in malignant tumors, including lung cancer, and its underlying molecular mechanism have not been reported yet. Materials and methods: Immunohistochemistry was performed to analyze the expression of FRMPD1 in lung cancer tissues, and statistical analysis was applied to analyze the relationship between FRMPD1 expression and clinicopathological factors. The biological effects of FRMPD1 on lung cancer cell proliferation and invasion were determined by functional experiments both in vivo and in vitro. Immunoblotting, RT-qPCR, dual-luciferase assay, and immunofluorescence were performed to demonstrate whether FRMPD1 stimulates Hippo signaling. Co-immunoprecipitation assays were used to clarify the underlying role of FRMPD1 in Hippo pathway activation via interaction with WW and C2 domain containing protein-3 (WWC3). Results: We found that FRMPD1 expression in lung cancer specimens was lower than that in normal bronchial epithelium and normal submucosal glands. FRMPD1 expression had a negative correlation with age, Tumor-Node-Metastasis (TNM) stage, lymph node metastasis, as well as poor prognosis. Moreover, ectopic expression of FRMPD1 significantly inhibited the proliferation and invasion of lung cancer cells, and inhibition of FRMPD1 expression led to opposite effects. Mechanistically, we found that FRMPD1 interacted with the C-terminal PDZ binding motif of WWC3 via its PSD95/DLG/ZO1 (PDZ) domain and promoted the phosphorylation of large tumor suppressor-1 (LATS1), thus inhibiting the nuclear translocation of yes-associated protein (YAP). Conclusion: FRMPD1 could activate the Hippo pathway and ultimately inhibit the malignant behavior of lung cancer cells through its interaction with WWC3. This work will provide an important experimental basis for the discovery of novel biomarkers of lung cancer and the development of targeted drugs.

14.
J Thorac Oncol ; 14(10): 1766-1783, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228625

RESUMO

INTRODUCTION: The molecular mechanism underlying the induction of resistance to tyrosine kinase inhibitors (TKIs) via the membranous/cytoplasmic/nuclear translocation of EGFR has not yet been reported. METHODS: We performed immunohistochemistry to detect the distribution of EGFR in lung adenocarcinoma specimens after TKI treatment and analyzed the relationship between different EGFR locations and patient survival duration. Mass spectrometry analysis and immunoprecipitation were performed to show the interaction of cytosolic EGFR with YY1 associated protein 1 (YAP) and salt inducible kinase 2 (SIK2). Dual-luciferase assays, immunoblotting, real-time polymerase chain reaction, and functional experiments were used to elucidate the role of EGFR cytoplasmic/nuclear translocation in Hippo pathway dysregulation. RESULTS: Patients with advanced lung adenocarcinoma with membranous mutant EGFR (19del or 21 L858R) showed significantly longer progression-free survival than those with cytoplasmic mutant EGFR after gefitinib treatment. The concentration that inhibits 50% in PC-9 with cytoplasmic EGFR was higher than that in hunman non-small cell lung cancer 827 with membranous EGFR. During first-generation TKI resistance induction, membrane EGFR translocated to the cytoplasm/nucleus, accompanied by the Hippo pathway inhibition. Cytoplasmic EGFR and SIK2 interaction inhibited large tumor suppressor kinase 1 (LATS1) and macrophage stimulating 1 (MST1) interaction, promoting YAP nuclear translocation. However, cells with osimertinib-induced resistance also showed EGFR translocation and lower phospho-EGF receptor but did not show Hippo pathway inhibition. Moreover, osimertinib and erlotinib could restore sensitivity to each other in resistant cells. CONCLUSIONS: Plasma/nuclear translocation of EGFR and inhibition of the Hippo pathway are some of the important mechanisms underlying the resistance induced by first-generation TKIs. Membrane/plasma translocation of EGFR induced by osimertinib may be another resistance phenomenon besides MNNG HOS transforming gene (c-MET) amplification, C797S mutation, and ERK pathway inhibition.


Assuntos
Adenocarcinoma de Pulmão/patologia , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Prognóstico , Transporte Proteico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Onco Targets Ther ; 11: 2581-2591, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780251

RESUMO

BACKGROUND: Though we recently reported that the WWC3 inhibits the invasiveness and metastasis of lung cancer by activating the Hippo pathway, the impact and underlying mechanisms of this process still remain unclear. METHODS: To identify the role of WWC3 in epithelial-mesenchymal transition of lung cancer, we performed immunohistochemistry to detect the expression levels of WWC3 and EMT-related biomarker, and analyzed their correlations in a cohort of 127 patients with NSCLC. Wound healing assay and cell invasion assay were applied to explore cell invasive ability change after WWC3 knockdown. qRT-PCR and immunoblotting were performed to assess mRNA and protein levels of EMT-related biomarkers and the main molecules changes of Hippo signaling caused by WWC3. Immunoprecipition was to examine WWC3 and LATS1 interaction. RESULTS: WWC3 knockdown drives a pronounced shift from the epithelial to the mesenchymal phenotype in lung cancer cells. In addition, WWC3 ectopic expression in lung cancer cells attenuates mesenchymal markers and increases the epithelial markers expressions; however, WWC3-ΔWW plasmid abrogated these effects. WWC3 silencing by shRNA exerts the opposite effect. Furthermore, WWC3 levels were inversely correlated with the levels of EMT inducers (Snail and Slug) in lung cancer cells and specimens. Immunoblotting revealed that WWC3 wild-type upregulates large tumor suppressor (LATS1) and yes-associated protein (YAP) phosphorylation through its WW domain, hence activating Hippo pathway. Knockdown of YAP and LATS1, as well as the as the Verteporfin (VP) usage, could reverse this effect caused by WWC3 silencing. CONCLUSION: These findings suggest that WWC3 works as a tumor suppressor to inhibit EMT process and confer its candidacy as a potential therapeutic target in lung cancer.

16.
Oncotarget ; 8(45): 78734-78748, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108261

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide, and despite recent improvements in treatment patient prognosis remains dismal. In this study, we examined the role of N-terminal Ras-association domain family 7 (RASSF7) in human non-small cell lung cancer (NSCLC). We found that RASSF7 was overexpressed NSCLC tissues, which correlated with advanced TNM stage, positive lymph node metastasis, and poor prognosis. This RASSF7 overexpression promoted lung cancer cell proliferation, migration, and invasion. We also found that RASSF7 interacted with mammalian Ste20-like kinase 1(MST1) through its C-terminal coiled-coil domain to inhibit MST1 phosphorylation as well as the phosphorylation of large tumor suppressor kinase 1(LATS1) and yes-associated protein (YAP), while promoting the nuclear translocation of YAP. In addition, RASSF7 overexpression inhibited the Hippo signaling pathway both in vitro and vivo and promoted the expression of proteins associated with proliferation and invasion, such as connective tissue growth factor. These results suggest that targeting RASSF7 could be exploited for therapeutic benefit in the treatment of NSCLC.

18.
Cancer Res ; 75(21): 4527-37, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26359454

RESUMO

Transmembrane protein 88 (TMEM88) is a transmembrane protein that plays a crucial role in regulating human stem cell differentiation and embryonic development. However, its expression and clinicopathologic significance in human neoplasms is unclear. In this study, the expression and subcellular localizations of TMEM88 were assessed in 214 cases of non-small cell lung cancer (NSCLC). Notably, TMEM88 was highly expressed in the cytosol of ∼60% NSCLC specimens examined. Higher expression of cytosolic TMEM88 in NSCLC correlated significantly with poor differentiation, high TNM stage, lymph node metastasis, and inferior survival. In NSCLC cells displaying membrane-localized TMEM88, we observed an inhibition of canonical Wnt signaling due to interactions of TMEM88 with the Wnt pathway factor Dishevelled (DVLS). In contrast, NSCLC cells with cytosol-localized TMEM88 lacked effects on Wnt signaling. Cytosolic interactions of TMEM88 and DVLS increased the expression of phosphorylated, active forms of p38, GSK3ß (Thr390), and Snail, thereby reducing the expression of the tight junction-associated proteins ZO-1 and occludin, effects associated with enhanced invasive and metastatic cell characters. Importantly, attenuating the expression of cytosolic TMEM88 reduced metastatic prowess in xenograft models. Overall, our findings show how mislocalization of TMEM88 to the cytosol in NSCLC cells ablates its Wnt pathway regulatory properties, thereby promoting invasion and metastasis by activating the p38-GSK3ß-Snail signaling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Citosol/metabolismo , Proteínas Desgrenhadas , Feminino , Regulação Neoplásica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Metástase Linfática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Transplante de Neoplasias , Ocludina/biossíntese , Fosfoproteínas/metabolismo , Fosforilação , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Transplante Heterólogo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteína da Zônula de Oclusão-1/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA