Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1325-1333, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297687

RESUMO

We demonstrate high-harmonic generation for the time-domain observation of the electric field (HHG-TOE) and use it to measure the waveform of ultrashort mid-infrared (MIR) laser pulses interacting with ZnO thin-films or WS2 monolayers. The working principle relies on perturbing HHG in solids with a weak replica of the pump pulse. We measure the duration of few-cycle pulses at 3200 nm, in reasonable agreement with the results of established pulse characterization techniques. Our method provides a straightforward approach to accurately characterize femtosecond laser pulses used for HHG experiments right at the point of interaction.

2.
Opt Express ; 31(2): 3364-3378, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785331

RESUMO

Semiconductor nanowire lasers can be subject to modifications of their lasing threshold resulting from a variation of their environment. A promising choice is to use metallic substrates to gain access to low-volume Surface-Plasmon-Polariton (SPP) modes. We introduce a simple, yet quantitatively precise model that can serve to describe mode competition in nanowire lasers on metallic substrates. We show that an aluminum substrate can decrease the lasing threshold for ZnO nanowire lasers while for a silver substrate, the threshold increases compared with a dielectric substrate. Generalizing from these findings, we make predictions describing the interaction between planar metals and semiconductor nanowires, which allow to guide future improvements of highly-integrated laser sources.

3.
Nano Lett ; 22(24): 9914-9919, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480926

RESUMO

Plasmonic gratings are simple and effective platforms for nonlinear signal generation since they provide a well-defined momentum for photon-plasmon coupling and local hot spots for frequency conversion. Here, a plasmonic azimuthally chirped grating (ACG), which provides spatially resolved broadband momentum for photon-plasmon coupling, was exploited to investigate the plasmonic enhancement effect in two nonlinear optical processes, namely two-photon photoluminescence (TPPL) and second harmonic generation (SHG). The spatial distributions of the nonlinear signals were determined experimentally by hyperspectral mapping with ultrashort pulsed excitation. The experimental spatial distributions of nonlinear signals agree very well with the analytical prediction based on photon-plasmon coupling with the momentum of the ACG, revealing the "antenna" function of the grating in plasmonic nonlinear signal generation. This work highlights the importance of the antenna effect of the gratings for nonlinear signal generation and provides insight into the enhancement mechanism of plasmonic gratings in addition to local hot spot engineering.

4.
Nanotechnology ; 33(3)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34619667

RESUMO

Ion irradiation of bulk and thin film materials is tightly connected to well described effects such as sputtering or/and ion beam mixing. However, when a nanoparticle is ion irradiated and the ion range is comparable to the nanoparticle size, these effects are to be reconsidered essentially. This study investigates the morphology changes of silver nanoparticles on top of silicon substrates, being irradiated with Ga+ions in an energy range from 1 to 30 keV. The hemispherical shaped nanoparticles become conical due to an enhanced and curvature-dependent sputtering, before they finally disappear. The sputter yield and morphology changes can be well described by 3D Monte Carlo TRI3DYN simulations. However, the combination of sputtering, ion beam mixing, ion beam induced diffusion, and Ostwald ripening at ion energies lower than 8 keV results in the reappearance of new particles. These newly formed nanoparticles appear in various structures depending on the material and ion energy.

5.
Nano Lett ; 20(12): 8668-8674, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205986

RESUMO

Scaling information bits to ever smaller dimensions is a dominant drive for information technology (IT). Nanostructured phase change material emerges as a key player in the current green-IT endeavor with low power consumption, functional modularity, and promising scalability. In this work, we present the demonstration of microwave AC voltage induced phase change phenomenon at ∼3 GHz in single Sb2Te3 nanowires. The resistance change by a total of 6-7 orders of magnitude is evidenced by a transition from the crystalline metallic to the amorphous semiconducting phase, which is cross-examined by temperature dependent transport measurement and high-resolution electron microscopy analysis. This discovery could potentially tailor multistate information bit encoding and electrical addressability along a single nanowire, rendering technology advancement for neuro-inspired computing devices.

6.
Nanotechnology ; 31(13): 135604, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31825900

RESUMO

ZnO nanobelts may grow with their polar axis perpendicular to growth direction. Heterostructured nanobelts therefore contain hetero-interfaces along the polar axis of ZnO where polarisation mismatch may induce electron confinement. These interfaces run along the length of the nanobelts. Such heterostructure nanobelts are grown by molecular beam epitaxy and TEM images confirm the core-shell structure. The effects of shell-growth temperature on nano-heterostructures is investigated using photoluminescence and secondary ion mass spectrometry in a focussed ion-beam microscope with Ne+ as the primary ion beam. We perform low temperature photoluminescence on ensembles of such heterostructures and single nanostructures. We show how single nanobelts have photoluminescence spectra rich in features and attribute these to band misalignment at ZnO/ZnMgO interfaces embedded within nano-heterostructures.

7.
Nanotechnology ; 31(20): 205705, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31995520

RESUMO

The fabrication of complex nanoscale electronics with reduced dimensions poses challenges on novel techniques to accurately determine fundamental electronic parameters. In this article, we present a universal contactless method based on Raman scattering for measuring the mobility and hole concentration independently in GaAs:Zn and Mn ion-implanted GaAs:Zn nanowires, potentially of great interest for spintronics applications. Clear coupled longitudinal optical phonon-plasmon modes were recorded and fitted with a dielectric function, based on the Drude model, which includes contributions from both plasmons and phonons. From the fitting, we extract accurate values of the plasma frequency and plasma damping constant from which we directly calculate the hole density and mobility, respectively. The extracted mobilities were also used as input data for analysis of complementary four-probe transport measurements, where the corresponding hole concentrations could be calculated and found to be in good agreement with those extracted directly from the Raman data. We also investigated the influence of annealing of the GaAs:Zn nanowires on the hole concentration and mobility and found strong indications of thermally activated defects related to a formed crystalline As/oxide shell around the nanowires. The method proposed here is extremely powerful for the characterization of nanoelectronics in general, and nanospintronics in particular for which Hall measurements are difficult to pursue due to problems related to contact formation, as well as to inherent magnetic properties of the devices.

8.
Nano Lett ; 19(6): 3563-3568, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117748

RESUMO

Einstein established the quantum theory of radiation and paved the way for modern laser physics including single-photon absorption by charge carriers and finally pumping an active gain medium into population inversion. This can be easily understood in the particle picture of light. Using intense, ultrashort pulse lasers, multiphoton pumping of an active medium has been realized. In this nonlinear interaction regime, excitation and population inversion depend not only on the photon energy but also on the intensity of the incident pumping light, which can be still described solely by the particle picture of light. We demonstrate here that lowering significantly the pump photon energy further still enables population inversion and lasing in semiconductor nanowires. The extremely high electric field of the pump bends the bands and enables tunneling of electrons from the valence to the conduction band. In this regime, the light acts by the classical Coulomb force and population inversion is entirely due to the wave nature of electrons, thus the excitation becomes independent of the frequency but solely depends on the incident intensity of the pumping light.

9.
Nanotechnology ; 30(9): 095201, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540978

RESUMO

Tunable nanoscale light emitters are essential to accomplish future multifunctional optoelectronic nano-devices. Here, we present an approach for achieving red electroluminescence from single ZnO nanowires (NWs) implanted with europium ions. The electroluminescence is emitted mainly from the end facets of ZnO NWs at room temperature under the application of an AC voltage. The corresponding electroluminescence spectrum is attributed to the radiative intrashell transitions of the Eu ions, while contributions from near band edge or deep level emission of the ZnO remain absent. The total intensity of the electroluminescence is linearly proportional to the length of the NWs, whereas there is no clear correlation with other morphology factors of the NW based device such as the diameter. Furthermore, the underlying excitation mechanism of the electroluminescence is proposed as direct-impact excitation of Eu ions by hot electrons in the ZnO NWs.

10.
Nanotechnology ; 30(33): 335202, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31018190

RESUMO

Recent progress in the realization of magnetic GaAs nanowires (NWs) doped with Mn has attracted a lot of attention due to their potential application in spintronics. In this work, we present a detailed Raman investigation of the structural properties of Zn doped GaAs (GaAs:Zn) and Mn-implanted GaAs:Zn (Ga0.96Mn0.04As:Zn) NWs. A significant broadening and redshift of the optical TO and LO phonon modes are observed for these NWs compared to as-grown undoped wires, which is attributed to strain induced by the Zn/Mn doping and to the presence of implantation-related defects. Moreover, the LO phonon modes are strongly damped, which is interpreted in terms of a strong LO phonon-plasmon coupling, induced by the free hole concentration. Moreover, we report on two new interesting Raman phonon modes (191 and 252 cm-1) observed in Mn ion-implanted NWs, which we attribute to Eg (TO) and A1g (LO) vibrational modes in a sheet layer of crystalline arsenic present on the surface of the NWs. This conclusion is supported by fitting the observed Raman shifts for the SO phonon modes to a theoretical dispersion function for a GaAs NW capped with a dielectric shell.

11.
Nanotechnology ; 30(6): 065501, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30523820

RESUMO

Novel gas sensors have been realized by decorating clusters of tubular Aerographite with CdTe using magnetron sputtering techniques. Subsequently, individual microtubes were separated and electrically contacted on a SiO2/Si substrate with pre-patterned electrodes. Cathodoluminescence, electron microscopy and electrical characterization prove the successful formation of a polycrystalline CdTe thin film on Aerographite enabling an excellent gas response to ammonia. Furthermore, the dynamical response to ammonia exposure has been investigated, highlighting the quick response and recovery times of the sensor, which is highly beneficial for extremely short on/off cycles. Therefore, this gas sensor reveals a large potential for cheap, highly selective, reliable and low-power gas sensors, which are especially important for hazardous gases such as ammonia.

12.
Nanotechnology ; 29(31): 314002, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29741493

RESUMO

If nanostructures are irradiated with energetic ions, the mechanism of sputtering becomes important when the ion range matches about the size of the nanoparticle. Gold nanoparticles with diameters of ∼50 nm on top of silicon substrates with a native oxide layer were irradiated by gallium ions with energies ranging from 1 to 30 keV in a focused ion beam system. High resolution in situ scanning electron microscopy imaging permits detailed insights in the dynamics of the morphology change and sputter yield. Compared to bulk-like structures or thin films, a pronounced shaping and enhanced sputtering in the nanostructures occurs, which enables a specific shaping of these structures using ion beams. This effect depends on the ratio of nanoparticle size and ion energy. In the investigated energy regime, the sputter yield increases at increasing ion energy and shows a distinct dependence on the nanoparticle size. The experimental findings are directly compared to Monte Carlo simulations obtained from iradina and TRI3DYN, where the latter takes into account dynamic morphological and compositional changes of the target.

13.
Nano Lett ; 17(11): 6637-6643, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28960998

RESUMO

Realizing visionary concepts of integrated photonic circuits, nanospectroscopy, and nanosensing will tremendously benefit from dynamically tunable coherent light sources with lateral dimensions on the subwavelength scale. Therefore, we demonstrate an individual nanowire laser based device which can be gradually tuned by reversible length changes of the nanowire such that uniaxial tensile stress is applied to the respective semiconductor gain material. By straining the device, the spontaneous excitonic emission of the nanowire shifts to lower energies caused by the bandgap reduction of the semiconductor. Moreover, the optical gain spectrum of the nanolaser can be precisely strain-tuned in the high excitation regime. The tuning of the emission does not affect the laser threshold of the device, which is very beneficial for practical applications. The applied length change furthermore adjusts the laser resonances inducing a redshift of the longitudinal modes. Thus, this concept of gradually and dynamically tunable nanolasers enables controlling and modulating the coherent emission on the nanoscale without changing macroscopic ambient conditions. This concept holds therefore huge impact on nanophotonic switches and photonic circuit technology.

14.
Phys Chem Chem Phys ; 19(21): 14042-14047, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28516985

RESUMO

Nanoscale heating production using nanowires has been shown to be particularly attractive for a number of applications including nanostructure growth, localized doping, transparent heating and sensing. However, all proof-of-concept devices proposed so far relied on the use of highly conductive nanomaterials, typically metals or highly doped semiconductors. In this article, we demonstrate a novel nanoheater architecture based on a single semiconductor nanowire field-effect transistor (NW-FET). Nominally undoped ZnO nanowires were incorporated into three-terminal devices whereby control of the nanowire temperature at a given source-drain bias was achieved by additional charge carriers capacitatively induced via the third gate electrode. Joule-heating selective ablation of poly(methyl methacrylate) deposited on ZnO nanowires was shown, demonstrating the ability of the proposed NW-FET configuration to enhance by more than one order of magnitude the temperature of a ZnO nanowire, compared to traditional two-terminal configurations. These findings demonstrate the potential of field-effect architectures to improve Joule heating power in nanowires, thus vastly expanding the range of suitable materials and applications for nanowire-based nanoheaters.

15.
Nano Lett ; 16(4): 2878-84, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27007261

RESUMO

Coherent light sources confining the light below the vacuum wavelength barrier will drive future concepts of nanosensing, nanospectroscopy, and photonic circuits. Here, we directly image the angular emission of such a light source based on single semiconductor nanowire lasers. It is confirmed that the lasing switches from the fundamental mode in a thin ZnO nanowire to an admixture of several transverse modes in thicker nanowires approximately at the multimode cutoff. The mode competition with higher order modes substantially slows down the laser dynamics. We show that efficient photonic mode filtering in tapered nanowires selects the desired fundamental mode for lasing with improved performance including power, efficiency, and directionality important for an optimal coupling between adjacent nanophotonic waveguides.

16.
Nano Lett ; 16(6): 3507-13, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27168031

RESUMO

In this letter, we demonstrate the formation of unique Ga/GaAs/Si nanowire heterostructures, which were successfully implemented in nanoscale light-emitting devices with visible room temperature electroluminescence. Based on our recent approach for the integration of InAs/Si heterostructures into Si nanowires by ion implantation and flash lamp annealing, we developed a routine that has proven to be suitable for the monolithic integration of GaAs nanocrystallite segments into the core of silicon nanowires. The formation of a Ga segment adjacent to longer GaAs nanocrystallites resulted in Schottky-diode-like I/V characteristics with distinct electroluminescence originating from the GaAs nanocrystallite for the nanowire device operated in the reverse breakdown regime. The observed electroluminescence was ascribed to radiative band-to-band recombinations resulting in distinct emission peaks and a low contribution due to intraband transition, which were also observed under forward bias. Simulations of the obtained nanowire heterostructure confirmed the proposed impact ionization process responsible for hot carrier luminescence. This approach may enable a new route for on-chip photonic devices used for light emission or detection purposes.

17.
Nano Lett ; 16(2): 1050-5, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26690855

RESUMO

Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices.

18.
Nano Lett ; 16(2): 973-80, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26675526

RESUMO

The realization of semiconductor structures with stable excitons at room temperature is crucial for the development of excitonics and polaritonics. Quantum confinement has commonly been employed for enhancing excitonic effects in semiconductor heterostructures. Dielectric confinement, which gives rises to much stronger enhancement, has proven to be more difficult to achieve because of the rapid nonradiative surface/interface recombination in hybrid dielectric-semiconductor structures. Here, we demonstrate intense excitonic emission from bare GaN nanowires with diameters down to 6 nm. The large dielectric mismatch between the nanowires and vacuum greatly enhances the Coulomb interaction, with the thinnest nanowires showing the strongest dielectric confinement and the highest radiative efficiency at room temperature. In situ monitoring of the fabrication of these structures allows one to accurately control the degree of dielectric enhancement. These ultrathin nanowires may constitute the basis for the fabrication of advanced low-dimensional structures with an unprecedented degree of confinement.

19.
Nanotechnology ; 27(17): 175301, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26978260

RESUMO

For ZnO nanowires of 150 to 200 nm diameter standing on a flat substrate, the development of the surface contour/morphology and the local elemental composition under 175 keV Mn irradiation has been investigated both experimentally and by means of three-dimensional dynamic Monte Carlo computer simulation. The simulation results reveal a complex interplay of sputter erosion, implant incorporation, resputtering and atomic mixing, which is discussed in detail. The sputter-induced thinning of the wire is in good quantitative agreement with the experimental results obtained from pre- and post-irradiation scanning electron microscopy. The experiments also confirm the predicted sharpening of the tip, neck formation at the bottom interface, and ultimately the detachment of the nanowires from the substrate at high ion fluence. Additional good agreement with experimental results from nano-x-ray fluorescence is also obtained for the continuously increasing Mn/Zn atomic ratio within the nanowires as a function of ion fluence. The simulation yields a great deal of additional information that has not been accessible in the experiments. From this, preferential sputtering of O compared with Zn is deduced. A significant contamination of the wires with substrate material arises from ion mixing at the wire/substrate interface, rather than from redeposition of sputtered substrate atoms. Surprising hollow profiles are observed. Their formation is attributed to a special mechanism of collisional transport which is characteristic of the irradiation of nanowires at a suitable combination of wire diameter and ion energy.

20.
Nanotechnology ; 27(22): 225702, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27103563

RESUMO

We report on the temporal lasing dynamics of high quality ZnO nanowires using the time-resolved micro-photoluminescence technique. The temperature dependence of the lasing characteristics and of the corresponding decay constants demonstrate the formation of an electron-hole plasma to be the underlying gain mechanism in the considered temperature range from 10 K to 300 K. We found that the temperature-dependent emission onset-time ([Formula: see text]) strongly depends on the excitation power and becomes smallest in the lasing regime, with values below 5 ps. Furthermore, the observed red shift of the dominating lasing modes in time is qualitatively discussed in terms of the carrier density induced change of the refractive index dispersion after the excitation laser pulse. This theory is supported by extending an existing model for the calculation of the carrier density dependent complex refractive index for different temperatures. This model coincides with the experimental observations and reliably describes the evolution of the refractive index after the excitation laser pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA